首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have inserted a 1.7-kilobase pair Escherichia coli DNA fragment containing the 1-kilobase pair pyrC gene into the high copy number plasmid pKC16. Dihydroorotase expressed by the pyrC plasmid in E. coli constituted 6.3% of the soluble protein in frozen cell paste. Pure dihydroorotase derived from this frozen cell paste was compared with pure enzyme derived from an E. coli strain lacking the pyrC plasmid: tryptic peptide maps from the two dihydroorotase preparations, produced using reverse-phase high performance liquid chromatography, were indistinguishable. We conclude that the entire pyrC gene is present on the hybrid plasmid and that the dihydroorotase produced from this plasmid is identical to the wild type.  相似文献   

2.
3.
4.
5.
The purine regulon repressor, PurR, was identified as a component of the Escherichia coli regulatory system for pyrC, the gene that encodes dihydroorotase, an enzyme in de novo pyrimidine nucleotide synthesis. PurR binds to a pyrC control site that resembles a pur regulon operator and represses expression by twofold. Mutations that increase binding of PurR to the control site in vitro concomitantly increase in vivo regulation. There are completely independent mechanisms for regulation of pyrC by purine and pyrimidine nucleotides. Cross pathway regulation of pyrC by PurR may provide one mechanism to coordinate synthesis of purine and pyrimidine nucleotides.  相似文献   

6.
7.
B. subtilis dihydroorotase is an important enzyme in de novo pyrimidine biosynthesis pathway and encoded by pyrC gene in pyr operon. pyrC was amplified from B. subtilis genomic DNA and cloned into expression vector pET21-DEST. Dihydroorotase was expressed soluble form in E. coli and purified. The protein was crystallized and diffracted to 2.2 A. The crystal belongs to P2(1)2(1)2(1) space-group, with unit cell parameters a = 48.864 A, b = 84.99 A, c = 203.05 A. There are 2 molecules per asymmetry unit.  相似文献   

8.
9.
The repressive effects of exogenous cytidine on growing cells was examined in a specially constructed strain in which the pool sizes of endogenous uridine 5'-diphosphate and uridine 5'-triphosphate cannot be varied by the addition of uracil and/or uridine to the medium. Five enzymes of the pyrimidine biosynthetic pathway and one enzyme of the arginine biosynthetic pathway were assayed from cells grown under a variety of conditions. Cytidine repressed the synthesis of dihydroorotase (encoded by pyrC), dihydroorotate dehydrogenase (encoded by pyrD), and ornithine transcarbamylase (encoded by argI). Moreover, aspartate transcarbamylase (encoded by pyrB) became further derepressed upon cytidine addition, whereas no change occurred in the levels of the last two enzymes (encoded by pyrE and pyrF) of the pyrimidine pathway. Quantitative nucleotide pool determinations have provided evidence that any individual ribo- or deoxyribonucleoside mono-, di-, or triphosphate of cytosine or uracil is not a repressing metabolite for the pyrimidine biosynthetic enzymes. Other nucleotide derivatives or ratios must be considered.  相似文献   

10.
11.
12.
A 10.5-kilobase PstI endonuclease fragment encoding the entire Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster was cloned in Escherichia coli by transformation of a carB strain to uracil-independent growth. The cloned fragment also complemented E. coli pyrB, pyrC, pyrD, pyrE, and pyrF mutants. From the ability of subclones to complement E. coli pyr mutants, the gene order was deduced to be pyrBCADFE. The B. subtilis pyrB gene was shown to be expressed in E. coli, but synthesis of the enzyme was not repressible by the addition of uracil to the growth medium. The approximate molecular weights of the polypeptides encoded by B. subtilis pyrA, pyrB, pyrC, pyrD, pyrE, and pyrF were found to be 110,000, 36,000, 46,000, 34,000, 25,000, and 27,000, respectively.  相似文献   

13.
A beta-galactosidase gene from Clostridium acetobutylicum NCIB 2951 was expressed after cloning into pSA3 and electroporation into derivatives of Lactococcus lactis subsp. lactis strains H1 and 7962. When the clostridial gene was introduced into a plasmid-free derivative of the starter-type Lact. lactis subsp. lactis strain H1, the resulting construct had high beta-galactosidase activity but utilized lactose only slightly faster than the recipient. beta-galactosidase activity in the construct decreased by over 50% if the 63 kb Lac plasmid pDI21 was also present with the beta-galactosidase gene. Growth rates of Lac+ H1 and 7962 derivatives were not affected after introduction of the clostridial beta-galactosidase, even though beta-galactosidase activity in a 7962 construct was more than double that of the wild-type strain. When pDI21 was electroporated into a plasmid-free variant of strain 7962, the recombinant had high phospho-beta-galactosidase activity and a growth rate equal to that of the H1 wild-type strain. The H1 plasmid-free strain grew slowly in T5 complex medium, utilized lactose and contained low phospho-beta-galactosidase activity. We suggest that beta-galactosidase expression can be regulated by the lactose phosphotransferase system-tagatose pathway and that Lact. lactis subsp. lactis strain H1 has an inefficient permease for lactose and contains chromosomally-encoded phospho-beta-galactosidase genes.  相似文献   

14.
15.
16.
Saccharomyces cerevisiae autoselection strains with mutations in the ura3, fur1, and urid-k genes have been obtained through a sequential isolation procedure. This autoselection system is an extension of one described by Loison et al. The mutations effectively block both the pyrimidine biosynthetic and salvage pathways and in combination are lethal to the host. Therefore, a plasmidencoded URA3 gene is essential for cell viability regardless of the growth conditions, and complex (traditionally nonselective) media can be employed without the risk of plasmid loss. The effects of medium enrichment on growth and cloned gene product synthesis were examined in batch culture for two autoselection strains. The plasmid gene product beta-galactosidase was under the control of the yeast GAL1 promoter, and two methods of induction were employed; one strain was induced via temperature shift while the other was induced by galactose addition. Three nutrient media were investigated: a lean selective medium (SD), a richer semidefined medium (SDC), and a rich complex medium (YPD). The results demonstrated the improvements in cloned gene productivity possible when the growth medium is enriched, with up to 10-fold increases in beta-galactosidase productivity observed. Plasmid instability and mutation reversion were not problems for the autoselection strains, even in uracil-containing medium. Short-term plasmid stabilities were approximately 90% in all three media tested. During continuous culture of the autoselection temperature-sensitive strain, long-term plasmid stability was excellent and beta-galactosidase expression remained high after more than 25 residence times under inducing conditions. In contrast, both beta-galactosidase specific activity and plasmid stability decreased linearly with time for an analogous nonautoselection strain. The introduced fur1 and uridk mutations were very stable; after more than 50 generations of growth in complex medium, stability values of 99-100% were measured. (c) 1993 Wiley & Sons, Inc.  相似文献   

17.
Regulation by iron was studied in Escherichia coli strains whose iron supply was entirely dependent on the iron(III)-aerobactin system determined by the ColV plasmid. By the insertion of phage Mu (Ap lac) into the ColV plasmid, mutants were selected that could no longer grow in iron-limited media. The inserted Mu (Ap lac) strongly reduced the amount of aerobactin and he cloacin receptor protein formed by the cells. Their production was no longer subject to regulation by iron. The Mu (Ap lac) insertion apparently led to a polar effect on the expression of the presumably closely linked genes that control the synthesis of aerobactin and the cloacin receptor protein. The expression of the beta-galactosidase gene on the inserted phage genome came under the control of the iron state of the cells. Under iron-limited growth conditions, the amount of beta-galactosidase synthesized was, depending on the strain studied, 6 to 30 times higher than under iron-sufficient growth conditions. In fur mutants with an impaired iron regulation of ll iron supply systems studied so far, high amounts of beta-galactosidase were synthesized independent of the cells' iron supply. The results demonstrate an iron-controlled promoter on the ColV plasmid which is subject to regulation by the chromosomal fur gene.  相似文献   

18.
Growth of Salmonella typhimurium pyrC or pyrD auxotrophs was severely inhibited in media that caused derepressed pyr gene expression. No such inhibition was observed with derepressed pyrA and pyrB auxotrophs. Growth inhibition was not due to the depletion of essential pyrimidine biosynthetic pathway intermediates or substrates. This result and the pattern of inhibition indicated that the accumulation of the pyrimidine biosynthetic pathway intermediate carbamyl aspartate was toxic. This intermediate is synthesized by the sequential action of the first two enzymes of the pathway encoded by pyrA and pyrB and is a substrate for the pyrC gene product. It should accumulate to high levels in pyrC or pyrD mutants when expression of the pyrA and pyrB genes is elevated. The introduction of either a pyrA or pyrB mutation into a pyrC strain eliminated the observed growth inhibition. Additionally, a direct correlation was shown between the severity of growth inhibition of a pyrC auxotroph and the levels of the enzymes that synthesize carbamyl aspartate. The mechanism of carbamyl aspartate toxicity was not identified, but many potential sites of growth inhibition were excluded. Carbamyl aspartate toxicity was shown to be useful as a phenotypic trait for classifying pyrimidine auxotrophs and may also be useful for positive selection of pyrA or pyrB mutants. Finally, we discuss ways of overcoming growth inhibition of pyrC and pyrD mutants under derepressing conditions.  相似文献   

19.
The nucleotide sequences of the genes encoding the enzyme aspartate transcarbamoylase (ATCase) from Pseudomonas putida have been determined. Our results confirm that the P. putida ATCase is a dodecameric protein composed of two types of polypeptide chains translated coordinately from overlapping genes. The P. putida ATCase does not possess dissociable regulatory and catalytic functions but instead apparently contains the regulatory nucleotide binding site within a unique N-terminal extension of the pyrB-encoded subunit. The first gene, pyrB, is 1,005 bp long and encodes the 334-amino-acid, 36.4-kDa catalytic subunit of the enzyme. The second gene is 1,275 bp long and encodes a 424-residue polypeptide which bears significant homology to dihydroorotase (DHOase) from other organisms. Despite the homology of the overlapping gene to known DHOases, this 44.2-kDa polypeptide is not considered to be the functional product of the pyrC gene in P. putida, as DHOase activity is distinct from the ATCase complex. Moreover, the 44.2-kDa polypeptide lacks specific histidyl residues thought to be critical for DHOase enzymatic function. The pyrC-like gene (henceforth designated pyrC') does not complement Escherichia coli pyrC auxotrophs, while the cloned pyrB gene does complement pyrB auxotrophs. The proposed function for the vestigial DHOase is to maintain ATCase activity by conserving the dodecameric assembly of the native enzyme. This unique assembly of six active pyrB polypeptides coupled with six inactive pyrC' polypeptides has not been seen previously for ATCase but is reminiscent of the fused trifunctional CAD enzyme of eukaryotes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号