首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bilateral intrastriatal injection of DL-2-amino-5-phosphonovaleric acid (AP-5), that blocks glutamatergic transmission at the N-methyl-d-aspartate preferring receptor, induces sniffing and body turns and reduces grooming in rats. Timelotem, a representative of the newly developed chemical class of anellated benzodiazepines antagonized specifically AP-5-induced sniffing and body turns. Classical (haloperidol) as well as atypical (clozapine) neuroleptics had recently been shown to antagonize AP-5-induced sniffing; clozapine, like timelotem, but not haloperidol, additionally antagonized AP-5-induced body turns. Further, timelotem antagonized amphetamine-induced stereotyped behaviour in rats, but was found less active than haloperidol in this test. Comparing the activity of drugs in both paradigms revealed that haloperidol inhibited AP-5-induced sniffing and amphetamine-induced stereotypies within the same dose range, but timelotem and clozapine were found more potent in the AP-5 test than in the amphetamine test. Thus, detailed drug profiles discriminate timelotem and clozapine from haloperidol, linking timelotem again to atypical antipsychotic compounds.  相似文献   

2.
The effects on Pavlovian alimentary conditioned reflexes realization of two methods of intrastriatal microinjections--acute (separate) and long-term (chronic) one--are compared in experiments on dogs. Bilateral acute administration and the first week of chronic injection of 45 mcg of GABA into the caudate nuclei produced in dogs a manifest improvement of parameters of the conditioned differentiation inhibition, but only in the next period of chronic treatment an improvement of the positive Pavlovian alimentary conditioned reflex was obtained. The both ways of picrotoxin treatment impaired conditioned behaviour, and this effect was observed after the end of injection. No withdrawal effects were recorded. The data obtained give ground for discussion of the role of striatal GABAergic system in the positive modulation of adaptive alimentary behaviour. The application of novel psychopharmacological method in experimental and clinical fields of investigation is discussed.  相似文献   

3.
Intrastriatal injection of soman (14.85 nmol) inhibits cholinesterase (ChE) activity in the striatum with much smaller decreases in ChE activity in other brain areas of the rat. As would be expected, there is a substantial increase in striatal acetylcholine (ACh) content shortly after soman injection. However, this increase is no longer significant 1 h following intrastriatal injection. There is no change in striatal KACh 20 min, 1 h or 24 h following soman injection. ACh content is not affected in the parietal cortex, hippocampus, or medulla/pons following intrastriatal soman injection. However, KACh and/or ACh turnover are reduced in these brain areas following soman injection. There is no consistent effect on dopamine (DA) metabolism in any of the brain areas studied. However, serotonin (5-HT) metabolism appears to be affected in the cortex, hippocampus and medulla/pons following intrastriatal injection of soman. Possible mechanisms of the actions of local injection of soman on brain Ach and 5-HT metabolism are discussed, as well as the differences observed between the effects of local and peripheral administration of soman on DA metabolism in the striatum.  相似文献   

4.
The effects on rat striatal dopamine (DA) metabolism of systemic and local administration of CGP 28014, an inhibitor of catechol-O-methyl-transferase (COMT), were studied by in vivo microdialysis. CGP 28014 (30 mg/kg i.p.) significantly reduced the levels of homovanillic acid (HVA), but did not modify DA and 3,4-dihydroxyphenylacetic acid (DOPAC). The intrastriatal administration (via the microdialysis probe) of 5, 7.5, 10, and 20 mM of CGP 28014 elicited a concentration-dependent, several-fold increase in extracellular DA but did not alter the levels of HVA and DOPAC. Thus, the effects of CGP 28014 observed after i.p. injection (decrease in HVA levels) are different from those measured after intrastriatal administration (increase in DA release). Therefore, the inhibition of COMT is likely to be due to the action of a metabolite of CGP 28014 formed in the periphery and not in the brain.  相似文献   

5.
The mouse striatum contains about 2 ng/g of tryptamine and 600 ng/g of 5-hydroxytryptamine. No significant changes in mouse striatal tryptamine were observed after the administration of chlorpromazine, haloperidol, spiperone, or alpha-flupenthixol. The levels of 5-hydroxytryptamine were moderately reduced by chlorpromazine, spiperone, and alpha-flupenthixol but not by haloperidol. The administration of antipsychotic drugs to mice pretreated with a monoamine oxidase inhibitor (pargyline) produced an increase in the rate of accumulation of striatal tryptamine compared with that of pargyline-treated mice. In contrast, the rate of accumulation of 5-hydroxytryptamine after monoamine oxidase inhibition was reduced by chlorpromazine, spiperone, and alpha-flupenthixol but not haloperidol. D-Amphetamine administration did not change either tryptamine or its 5-hydroxyderivative while reserpine increased tryptamine and reduced 5-hydroxytryptamine. The results suggest that changes in striatal tryptamine may be controlled by the availability of tryptophan, the amino acid precursor of tryptamine.  相似文献   

6.
Methylene blue (MB) is a thiazine dye with cationic and lipophilic properties that acts as an electron transfer mediator in the mitochondria. Due to this metabolic improving activity and free radicals scavenging effects, MB has been used in the treatment of methemoglobinemia and ifosfamide-induced encephalopathy. Considering that methylmalonic acidemia consists of a group of inherited metabolic disorders biochemically characterized by impaired mitochondrial oxidative metabolism and reactive species production, we decided to investigate whether MB, protects against the behavioral and neurochemical alterations elicited by the intrastriatal injection of methylmalonate (MMA). In the present study we showed that intrastriatal injection of MB (0.015-1.5nmol/0.5microl) protected against seizures (evidenced by electrographic recording), protein carbonylation and Na(+),K(+)-ATPase inhibition ex vivo induced by MMA (4.5micromol/1.5microl). Furthermore, we investigated whether convulsions elicited by intrastriatal MMA administration are accompanied by striatal protein carbonyl content increase and changes in Na(+),K(+)-ATPase activity in rat striatum. The effect of MB (0.015-1.5nmol/0.5microl) and MMA (4.5micromol/0.5microl) on striatal NO(x) (NO(2) plus NO(3)) content was also evaluated. Statistical analysis revealed that the MMA-induced NO(x) content increase was attenuated by intrastriatal injection of MB and the duration of convulsive episodes correlated with Na(+),K(+)-ATPase inhibition, but not with MMA-induced total protein carbonylation. In view of that MB decreases MMA-induced neurotoxicity assessed by behavioral and neurochemical parameters, the authors suggest that MB may be of value to attenuate neurological deficits of methylmalonic acidemic patients.  相似文献   

7.
Little is known about the in vivo function of the GTP-binding protein-coupled "metabotropic" excitatory amino acid (EAA) receptor. In vitro studies on agonist-induced brain phosphoinositide hydrolysis have shown that (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid is a highly selective and efficacious metabotropic EAA agonist. We have recently reported that in vivo unilateral intrastriatal injection of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid induces transient extrapyramidal motor activation that manifests itself as contralateral turning. In this study, we fully characterized the onset of turning behavior following intrastriatal (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid injection and the possible involvement of striatal dopamine neurons in the mediation of this effect. Rats were anesthetized with the short-acting agent halothane to allow for rapid surgical recovery and thus early behavioral measurements. Intrastriatal (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1 mumol/2 microliters) produced an incremental increase in contralateral turning starting at 1 h and plateauing 3-6 h after injection (peak effect, 39.1 +/- 6.7 rotations per 5 min). Dopamine depletion with alpha-methyl-DL-p-tyrosine (250 mg/kg i.p., 80% depletion) resulted in greater than 85% inhibition of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid-induced contralateral turning. The dopamine antagonist haloperidol (0.3 mg/kg i.p.) produced 48% inhibition of the (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid response. In time course studies, turning behavior correlated with increases in levels of the dopamine metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid. These results suggest a functional interaction between the metabotropic EAA receptor and the dopaminergic system in the striatum.  相似文献   

8.
Effects of antagonism of endogenous dopamine with haloperidol on single-unit frequency, interspike interval distribution, and interval serial dependency of the cat sinus nerve were tested using an in vitro carotid body-sinus nerve superfusion technique. A dose dependency of inhibition by haloperidol (0.05-2.0 microgram/ml) was observed. Superfusion with 1-2 microgram/ml haloperidol significantly reduced frequency within 5 min (P less than 0.05) and caused a complete cessation of firing within 25 min in 5 of 10 chemoreceptor units. Frequency recovered to control during drug washout. Acetylcholine (10-micrograms/ml superfusion or 500-micrograms bolus) increased sinus nerve activity under control conditions but not during superfusion with haloperidol. No effect of haloperidol on impulse serial dependency was detected. However, interval distribution was significantly altered by haloperidol in five of six chemoreceptor units. Our results suggest an excitatory role for dopamine in carotid chemoreception.  相似文献   

9.
We investigated physiological effects of intramuscular injections of the following 3 long-acting neuroleptics commonly used in wildlife management: haloperidol (0.05, 0.1, and 0.5 mg/kg body mass), zuclopenthixol acetate (0.5, 1, and 5 mg/kg), and perphenazine enanthate (1, 3, and 10 mg/kg), in a rat model. Body temperature and cage activity were measured by intra-abdominal telemeters. Nociceptive responses were assessed by challenges to noxious heat and pressure. Haloperidol (0.5 mg/kg) produced a significant nocturnal hypothermia (p < 0.05) and decreased nighttime cage activity and food intake. Zuclopenthixol (5 mg/kg) significantly decreased nighttime body temperature and cage activity and, at 1 mg/kg and 5 mg/kg, significantly decreased food intake 5-17 h after injection (p < 0.05). Perphenazine (10 mg/kg) significantly decreased nighttime body temperature and cage activity and, at all doses, significantly decreased food intake 5-17 h after injection (p < 0.05). Significant analgesic activity was evident in rats given 5 mg/kg zuclopenthixol up to 40 h after injection, and 10 mg/kg perphenazine from 48 to 96 h after injection (p < 0.0001). Zuclopenthixol (5 mg/kg) and perphenazine (10 mg/kg) had significant antihyperalgesic activities at 16 h postinjection and 24-48 h postinjection, respectively (p < 0.0001). Haloperidol had no significant antinociceptive activity at doses tested. Motor function was impaired in rats given 0.5 mg/kg haloperidol, 5 mg/kg zuclopenthixol and 10 mg/kg perphenazine. Effects of long-acting neuroleptics on body temperature, feeding, and activity were short-lasted and should not preclude their use in wildlife. Antinociceptive actions were longer-lasting, but were nonspecific, and we recommend additional analgesics for painful procedures during wildlife management.  相似文献   

10.
The neurochemical and motor effects of a high dose (25 mg/kg) of haloperidol were assessed in male Sprague-Dawley rats. In Experiment 1, this high dose of haloperidol caused dramatic increases in striatal dopaminergic and serotonergic turnover that only returned to control levels 100 hr after injection. In the second experiment, the same dose of haloperidol was administered twice over a 3-week interval in the presence or absence of a dietary tryptophan supplement added to the drinking water. Rats were assessed for disruption of locomotor behavior (using the rotorod) as well as the occurrence of spontaneous (dyskinetic-like) chewing and head twitching. It was observed that haloperidol impaired rotorod performance in a manner that paralleled the time course of the neurochemical changes in Experiment 1. In addition, the tryptophan (consumed at an average of 157 mg/kg/day) exacerbated the deficit in rotorod performance in haloperidol-treated rats after the first, but not after the second, haloperidol injection. Finally, the combination of haloperidol plus tryptophan was found to cause a long-lasting increase in spontaneous chewing movements that lasted 56 days after the first injection. These observations are interpreted in the context of tryptophan supplementation to antipsychotic therapy.  相似文献   

11.
Diisopropylfluorophosphate (81.5 nmol) was injected directly into the striata of rats to study changes in striatal metabolism of acetylcholine (ACh), 3,4-dihydroxyphenylethylamine (dopamine), and 5-hydroxytryptamine (serotonin) at early time points following acute irreversible inhibition of cholinesterase. Twenty minutes following the intrastriatal injection of diisopropylfluorophosphate, levels of striatal acetylcholine were elevated by 50%, but a decrease in KACh compensated for this change. At 1 h, levels of ACh were still elevated, but not significantly different from control values. However, KACh and, hence, ACh turnover were greatly enhanced at this time. Finally, at 24 h, striatal ACh content was only slightly elevated and KACh and the turnover rate of ACh had returned to control values. Striatal cholinesterase activity remained significantly inhibited at all three times. At none of these times was ACh content or turnover affected in the parietal cortex, hippocampus, hypothalamus, or medulla/pons. Neither dopamine and its metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid nor serotonin and its metabolite 5-hydroxyindoleacetic acid were significantly affected at any of the three times by intrastriatal diisopropylfluorophosphate treatment. Possible mechanisms of the changes in cholinergic parameters are discussed.  相似文献   

12.
In experiments on 60 Sprague-Dawley rats, effects of systemic and intrastriatal injections of se-lective blocker of D1 receptors SCH23390 on elaboration of discriminational conditioned reflex of active avoidance (CRAA) were studied in T-maze and on behavior in test of the "open field". Systemic administration of this inhibitor at doses of 0.025 mg/kg produced a several fold decrease of percentage of correct realizations of the discriminational CRAA and of motor activity in the "open field" test. Bilateral microinjections of SCH23390 into the rat neostriatum at a dose of 0.004-1.0 mkg did not deteriorate learning of the discriminational CRAA as compared with intact control, although a marked inhibition of motor activity was observed in the open field, test. Analysis of the data has also shown a statistically significant decrease of percentage of errors in the starting maze compartment in experiments with intrastriatal injection of SCH23390 to rats. At the same time, the intrastriatal injection to rats of raclopride, a blocker of D2 dopamine receptors, at a dose of 0.004 mkg produced a sharp and prolonged deterioration of learning of the discriminational CRAA. The data obtained have allowed the following conclusions to be made: 1. Difference of effects of the systemic and intrastriatal SCH23390 injections seems to be due to that the behavioral changes observed at the systemic administration can be provided predominanantly by structures differing from neostriatal D1 receptors; 2. Effect of nigrostriatal dopaminergic system on the neostriatum through D1 receptors is complex: activation of motor activity (efferent spine cells of the direct pathway) and a poor modulation of the learning process (large aspine cholinergic interneurons); 3. The modulation of the learning process seems to occur through neostriatal D2 receptors (large aspine cholinergic interneurons).  相似文献   

13.
Two groups of rats with different level of motor activities: high- and low-active animals, were distinguished. The blockade of dopamine receptors by haloperidol led to depression of locomotor activity in both groups of rats; in grape snails, haloperidol caused a decrease of the velocity of locomotor responses. In was found that within 5 minutes of intravenous injection of haloperidol the excitability of spinal centers of rats decreased; but in 30 minutes in started restoring. Chronic application of the preparation depressed the effect of posttetanic potentiation of H-response in gastrocnemius muscle of spinal rats. In command neurons of grape snail, chronic injections of haloperidol causes a significant hyperpolarization shift of membrane potential and an increase of threshold of the generation of action potential. It was shown that the selective pharmacological inhibition of dopaminergic system of the brain led to a decrease of excitability in some determined neurons of the snail and spinal motor centers of rats, as well as inhibited the locomotor responses both in vertebrate and in invertebrate animals.  相似文献   

14.
Were studied the effects of bilateral daily intrastriatal microinjections in the course of two weeks of amphetamine (45 mcg), haloperidol (5 mcg), naloxone (5 mcg), and enkephalin synthetic tetrapeptide analogue (15 mcg) on behaviour and the level of dopamine and its metabolites in the striatum and substantia nigra of rats. Amphetamine improved but haloperidol impaired conditioned avoidance response realization in a shuttle-box and produced parkinsonian-like akinetic status. Naloxone was behaviourally uneffective but the tetrapeptide produced the obvious cataleptic status with plastic rigidity of the skeletal muscles. Both amphetamine and haloperidol lowered significantly striatal dopamine level and increased the level of its metabolites. The tetrapeptide produced the opposite neurochemical effect. Possible origin of discoordination between behavioural and neurotransmitter changes are discussed.  相似文献   

15.
Summary. Several data indicate that inhibition of glutamatergic transmission may be important to alleviate of parkinsonian symptoms. Therefore, the aim of the present paper is to review recent studies on the search for putative antiparkinsonian-like effects of mGluR ligands and their brain targets. In order to inhibit glutamatergic transmission, the group I mGluRs (mGluR1 and mGluR5) were blocked, and group II (mGluR2/3) or III (mGluR4/7/8) mGluRs were activated. Systemic or intrastriatal administration of group I mGluR antagonists (mGluR5 – MPEP, MTEP; mGluR1 – AIDA) was found to inhibit parkinsonian-like symptoms (catalepsy, muscle rigidity) in rats. MPEP administered systemically and mGluR1 antagonists (AIDA, CPCCOEt, LY367385) injected intrastriatally reversed also the haloperidol-increased proenkephalin (PENK) mRNA expression in the striatopallidal pathway. Similarly, ACPT-1, a group III mGluR agonist, administered into the striatum, globus pallidus or substantia nigra inhibited the catalepsy. Intrastriatal injection of this compound reduced the striatal PENK expression induced by haloperidol. In contrast, a group II mGluR agonist (2R,4R-APDC) administered intrastriatally reduced neither PENK expression nor the above-mentioned parkinsonian-like symptoms. Moreover, a mixed mGluR8 agonist/AMPA antagonist, (R,S)-3,4-DCPG, administered systemically evoked catalepsy and enhanced both the catalepsy and PENK expression induced by haloperidol. The results reviewed in this article seem to indicate that group I mGluR antagonists or some agonists of group III may possess antiparkinsonian properties, and point at the striatopallidal pathway as a potential target of therapeutic intervention.  相似文献   

16.
Inhibition of mitochondrial respiration and free radical induction have been suggested to be involved in haloperidol neurotoxicity. In this study, mice were injected i.p. with haloperidol, according to two different treatments: (a) a single injection (1 mg/kg), sacrificed 1 h after the injection (single-dose model); and (b) two injections (1 mg/kg each), sacrificed 24 h after the first dose (double-dose model). Determinations of oxygen consumption and hydrogen peroxide (H2O2) production rate were carried out in isolated brain mitochondria. Nitric oxide (NO) and superoxide (O2-) production rates were measured in submitochondrial particles (SMP). Single-dose haloperidol treatment produced a 33% inhibition in malate-glutamate-dependent respiration, while no significant changes were found after double-dose treatment. NO production was inhibited by 39 and 54% in SMP from haloperidol-treated mice (single- and double-dose treatments, respectively) (control value: 1.6 +/- 0.2 nmol/min mg protein). NO steady-state concentration was estimated at about 16.5 nM and was decreased by 40% by haloperidol treatment. Increases of 105 and 54% were found in succinate-supported O2- and H2O2 production rates, respectively, after haloperidol single-dose treatment. Haloperidol treatment generated a 248% increase in SMP O2- production rate when measured in the presence of NADH plus rotenone. Our results suggest that haloperidol neurotoxicity would be mediated by a decreased mitochondrial NO production, a decreased intramitochondrial NO steady-state concentration, and by an inhibition of mitochondrial electron transfer with enhancement of O2- and H2O2 production. This inhibition does not seem to be caused by increased NO or ONOO- formation.  相似文献   

17.
Prolactin secretion was stimulated in 5 cyclic gilts during the luteal phase (Day 10-13) with 5 mg haloperidol given i.v. Stimulation of prolactin secretion was also attempted by inducing milk let-down by suckling (4 sows), or by the injection of 1 mg oxytocin i.v. followed by hand milking (3 sows). Plasma prolactin concentrations increased significantly 1-2 h after haloperidol injection, and in 3 of 4 sows during suckling (P = 0.001); plasma relaxin concentrations did not change significantly at these times. No change was observed in plasma prolactin or relaxin concentrations at 15 min or 1-2 h after oxytocin injection and hand milking. Plasma relaxin concentrations ranged from below the sensitivity of the assay (100 pg/ml) to 450 pg/ml in lactating sows and from 100 to 2000 pg/ml in cyclic gilts. The results suggest that in cyclic gilts treated in the luteal phase with a dopaminergic receptor blocker, and in lactating sows during suckling, elevations in plasma prolactin concentrations were not accompanied, during the same period, by detectable changes in relaxin concentrations.  相似文献   

18.
In experiments on male mice and rats, long-term haloperidol administration (0.25 mg/kg twice a day during 15 days) significantly changed behavioural effects of caerulein, an agonist of CCK-8 receptors. As a rule, the effects of caerulein were reduced or inverted; only long-term antagonism with amphetamine motor excitation in rats increased after the cessation of haloperidol administration. The decrease or inversion of caerulein's effects was connected with reduction of high-affinity dopamine2- and low-affinity CCK-8 receptors' density, reflecting the inhibition of some interneurons' activity in subcortical forebrain structures after haloperidol treatment. A more pronounced inhibition of dopamine's release by caerulein was the reason for the increased antiamphetamine action after long-term haloperidol treatment. It seems possible that both above mechanisms are involved in the antipsychotic action of haloperidol.  相似文献   

19.
Background activity was recorded in 272 neurons of the ventrolateral thalamic nucleus before and after systemic haloperidol and droperidol injection at a cataleptic dose using intracellular techniques during chronic experiments on cats in a drowsy condition. Brief burster discharges lasting 5–50 msec and following on at a high intraburst spike rate (of 200–450 Hz) were characteristic of neuronal activity in intact animals. Regular discharges occurred at the rate of 2–2.5 Hz or occasionally 3–4 Hz in 15% of cells. Numbers of neurons with the latter activity pattern rose to 22 and 30%, respectively, following haloperidol and droperidol injection. Both irregular and prolonged (80–300 msec) regular discharges were recorded in one third of the total. A relatively low intraburst spike rate (of 60–170 Hz) was observed in 37% of cells following 10 days' haloperidol injection. These changes are thought to be produced by intensified inhibitory effects on neurons of the thalamic ventrolateral nucleus from the substantia nigra and reticular thalamic nucleus following blockade of dopaminergic and -adrenergic receptors.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 5, pp. 675–685, September–October, 1989.  相似文献   

20.
Vriend J  Dreger L 《Life sciences》2006,78(15):1707-1712
Haloperidol, an antipsychotic drug, was tested for its effects on the in situ activity of nigrostriatal and hypothalamic tyrosine hydroxylase, in control male Syrian hamsters and in those receiving a high daily dose of melatonin. After receiving daily ip injections (1.25 mg/kg ip) of haloperidol for 21 days, the animals were sacrificed and brain tissue collected for analysis of dopamine and metabolites by HPLC with electrochemical detection. In situ activity of tyrosine hydroyxlase (TH) activity was determined by measuring the accumulation of L-Dopa after administration of the L amino acid decarboxylase inhibitor, mhydroxybenzylhydrazine. Tissue content of dopamine and its metabolites, DOPAC and HVA, was depressed in striatum of animals receiving haloperidol, and tyrosine hydroxylase (TH) activity was significantly decreased 20-24 h after the last injection (from 1823 +/- 63 to 1139 +/- 85 pg l-dopa/mg tissue). The decrease in TH activity in striatum was significantly inhibited by daily injections of a high dose of melatonin (2.5 mg/kg ip) (from 1139 +/- 85 to 1560 +/- 116 pg L-dopa/mg tissue). In the substantia nigra and in the hypothalamus, on the other hand, haloperidol significantly increased the activity of tyrosine hydroxylase. Melatonin administration did not significantly influence TH activity in the substantia nigra, but inhibited TH activity in the hypothalamus and in the pontine brainstem. One explanation for these data is that chronic haloperidol administration in Syrian hamsters increases TH activity in hypothalamus and substantia nigra, but decreases TH activity in striatum by a mechanism involving D2 presynaptic receptors and a melatonin sensitive kinase which regulates TH phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号