首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) and triglyceride (TG) between lipoproteins in plasma. However, short term suppression of CETP biosynthesis in cells alters cellular cholesterol homeostasis, demonstrating an intracellular role for CETP as well. The consequences of chronic CETP deficiency in lipid-storing cells normally expressing CETP have not been reported. Here, SW872 adipocytes stably expressing antisense CETP cDNA and synthesizing 20% of normal CETP were created. CETP-deficient cells had 4-fold more CE but an approximately 3-fold decrease in cholesterol biosynthesis. This phenotype of cholesterol overload is consistent with the observed 45% reduction in low density lipoprotein receptor and 2.5-fold increase in ABCA1 levels. However, cholesterol mass in CETP-deficient adipocytes was actually reduced. Strikingly, CETP-deficient adipocytes stored <50% of normal TG, principally reflecting reduced synthesis. The hydrolysis of cellular CE and TG in CETP-deficient cells was reduced by >50%, although hydrolase/lipase activity was increased 3-fold. Notably, the incorporation of recently synthesized CE and TG into lipid storage droplets in CETP-deficient cells was just 40% of control, suggesting that these lipids are inefficiently transported to droplets where the hydrolase/lipase resides. The capacity of cellular CETP to transport CE and TG into storage droplets was directly demonstrated in vitro. Overall, chronic CETP deficiency disrupts lipid homeostasis and compromises the TG storage function of adipocytes. Inefficient CETP-mediated translocation of CE and TG from the endoplasmic reticulum to their site of storage may partially explain these defects. These studies in adipocytic cells strongly support a novel role for CETP in intracellular lipid transport and storage.  相似文献   

2.
Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets   总被引:5,自引:0,他引:5  
The biosynthesis and storage of triglyceride (TG) is an important cellular process conserved from yeast to man. Most mammalian cells accumulate TG in lipid droplets, most prominent in adipocytes, which are specialized to store large amounts of the TG over long periods. In this study, we followed TG biosynthesis and targeting by fluorescence imaging in living 3T3-L1 adipocytes and COS7 fibroblasts. Key findings were (i) not only TG but also its direct metabolic precursor diacylglycerol, DG, accumulates on lipid droplets; (ii) the essential enzyme diacylglycerol acyltransferase 2 associates specifically with lipid droplets where it catalyzes the conversion of DG to TG and (iii) individual lipid droplets within one cell acquire TG at very different rates, suggesting unequal access to the biosynthetic machinery. We conclude that at least part of TG biosynthesis takes place in the immediate vicinity of lipid droplets. In vitro assays on purified lipid droplets show that this fraction of the biosynthetic TG is directly inserted into the growing droplet.  相似文献   

3.
目的 探讨大鼠骨髓间充质干细胞(mesenchymal stem cells,MSC)分离、纯化和体外诱导分化为脂肪细胞。方法 用密度梯度离心结合贴壁培养、定期换液,分离纯化出生大鼠MSC,传代扩增,并用免疫细胞化学法鉴定大鼠MSC的表面抗原。含地塞米松、3-异丁基-1-甲基黄嘌呤和胰岛素的培养液诱导MSC分化后,油红O染色鉴定。结果 大鼠MSC体外扩增10代以上,稳定表达CD44、CD54、CD106。油红O染色显示诱导后,71.2%有脂滴积聚。结论 从大鼠骨髓分离、纯化、体外诱导培养MSC,可定向分化为脂肪细胞表型。  相似文献   

4.
5.
The regulation of transformed phenotypes was studied in newly isolated preadipose cell lines which were established after infection with simian virus 40 tsA58 dl2009. The clonal cell lines isolated exhibited most of the characteristics typical of transformed cells. The transformants, however, were able to differentiate into adipocytes in the presence of low calf serum (0.5%) and a combination of several hormones, including hydrocortisone and insulin. Treatment with insulin alone stimulated the growth of these cells but did not induce lipid accumulation without added hydrocortisone. The effect of hydrocortisone was accompanied by a restoration of growth control in the transformants after they reached high cell density. The blot hybridization analysis of cellular DNAs digested by restriction enzymes revealed that simian virus 40 genomes were integrated at multiple separate sites at which a head-to-tail oligomeric insertion took place. Large T antigen was synthesized in growing cells but was regulated at high cell density when cells were committed to differentiate by glucocorticoids. These results suggest that the glucocorticoid hydrocortisone is capable of restoring growth regulation at high cell densities to simian virus 40-transformed preadipose cell lines.  相似文献   

6.
7.
Abstract Efforts were made to develop a human adipocyte model that is useful for toxicological studies in vitro. For this purpose, a stem cell line derived from human bone marrow cells, originally from an adult, was induced to differentiate towards adipocytes by treating them with insulin, dexamethasone, indomethacin and 3-isobutyl-1-methylxanthine for 3 d, followed by additional incubation for 3 d in Dulbecco's modified Eagle's medium supplemented with insulin only. In most cases, thus differentiated cells through such one cycle of differentiation treatment were further subjected to the second cycle of differentiation. The resulting 2-cycle differentiated cells were found to exhibit many characteristics of typical adipocytes. Dioxin (TCDD), when added at the beginning of their treatment with differentiation-inducing hormone cocktail, clearly prevented them from becoming adipocytes, as in the case of TCDD-treated 3T3-L1 cells. Furthermore, TCDD, even when administered to previously differentiated human mesenchymal stem cells (hMSC) adipocytes, consistently induced the sign of inflammatory responses during the early period of TCDD action (24 h), which was followed by gradual loss of adipocyte-specific markers during the 5-d incubation period. In conclusion, hMSC-derived adipocytes appear to offer a promising human cell model suited for future toxicological studies.  相似文献   

8.
The effects of PPAR-gamma agonists, thiazolidinediones (TZDs), on preadipocytes isolated from rat mesenteric adipose tissue and murine cell line 3T3-L1 were compared using an in vitro cell culture system. After each cell formed a confluent monolayer under appropriate medial conditions, pioglitazone or troglitazone was applied at 10 microM to each medium for cell maturation. We observed morphological changes in each cell, especially the accumulation of lipid droplets in the cytoplasm, during the culture periods. At the end of culture, DNA content, triglyceride (TG) content and glycerol-3-phosphate dehydrogenase (GPDH) activity were determined. Adiponectin concentrations in each culture medium were also measured during appropriate experimental periods. Application of TZDs increased the DNA content, TG accumulation and GPDH activity in the 3T3-L1 cells but not in the mesenteric adipocytes. Although TG accumulation was unchanged, the number of lipid particles was decreased and the size of lipid particles in the mesenteric adipocytes was increased by TZD application. Although the TZDs increased adiponectin release from the 3T3-L1 cells, adiponectin release from mesenteric adipocytes was suppressed (P<0.05). Thus, the effects of TZDs differed between the primary culture of mesenteric adipose cells and the line cell culture of 3T3-L1 cells. The source of adipocytes is an important factor in determining the action of TZDs in vitro, and particular attention should be paid when evaluating the effect of PPAR-gamma agonists on adipose tissues.  相似文献   

9.
Scavenger receptor class B, type I (SR-BI) mediates the selective uptake of lipids from high density lipoproteins and is expressed in several types of tissues. However, to date little is known about its role in adipocytes. In this study, we investigated the cellular distribution of SR-BI in 3T3-L1 adipocytes and its regulation by hormones known to increase lipid storage such as angiotensin II (Ang II) and insulin. SR-BI was mainly distributed in the cytoplasm as determined by laser-scanning confocal analysis of the immunofluorescence labeling of SR-BI or the study of an enhanced green fluorescent protein-tagged SR-BI fusion protein. Exposure of cells to either insulin or Ang II (1-2 h) induced the mobilization of SR-BI from intracellular pools to the plasma membrane. This was further confirmed by Western blotting on purified plasma membrane and by fluorescence-activated cell sorter analysis of the SR-BI receptor. Similar results were also observed in primary adipocytes. We also demonstrated that, in the presence of either insulin or Ang II, SR-BI translocation to the cell membrane is functional, because insulin and Ang II induced a significant increase in the high density lipoprotein-delivered 22-(N-7-nitrobenz-2-oxa-1,3-diazo-4-yl)-amino-23,24-bisnor-5-cholen-3-ol uptake and in total cholesterol content. These data demonstrate that SR-BI can be acutely mobilized from intracellular stores to the cell surface by insulin or Ang II, two hormones that exert lipogenic effects in adipocytes. This suggests that SR-BI might participate in the storage of lipids in the adipose tissue.  相似文献   

10.
11.
Mouse 3T3-L1 fibroblast cells, also know as preadipocytes, differentiate in vitro into adipocytes when treated with promoting agents and acquire numerous properties characteristic of mature fat cells. We studied junctional cell-to-cell communication by measuring the incidence of electrical coupling and transfer of carboxy- fluorescein among these cells. When 3T3-L1 cells were induced to differentiate into adipocytes, they lost virtually all cell-cell communication. Preadipocytes that remained nondifferentiated after the treatment maintained normal communication. Loss of communication in the adipocytes invariably coincided with appearance of lipid droplets and not with other phenotypic changes. In the differentiating cells, loss of cell-to-cell communication and lipid accumulation was prevented if dibutyryl cyclic AMP and caffeine were present in the culture medium. Addition of dibutyryl cyclic AMP and caffeine to already differentiated adipocytes resulted in loss of lipid and simultaneously improved junctional permeability. The results demonstrate that in the in vitro 3T3-L1 cell system, (a) cell-to-cell communication and lipid synthesis are intimately related during the adipose conversion and (b) cAMP affects the expression of the two phenotypes.  相似文献   

12.
Cells of the established preadipose line, 3T3-L1, appear to be undifferentiated fibroblasts during exponential growth. When cells become quiescent, a small percentage of them accumulate triglyceride and become morphologically indistinguishable from mature adipocytes. When insulin is added to quiescent cultures, up to 50% of the cells differentiate into adipocytes. The distribution of lipid-containing cells which appear in clusters of varying sizes was analyzed to determine whether commitment to differentiation occurred after quiescence or during exponential growth and whether insulin was required as an inducer of commitment. The spatial arrangement of 3T3-L1 cells at quiescence on some culture dishes was destroyed by replating. This resulted in random distribution of these cells. The distribution of adipocytes among replated and nonreplated cells in these experiments was compared to a computer generated random distribution of differentiated among undifferentiated cells. Dispersal of cells at confluence resulted in a distribution of fat among nonfat cells not significantly different from the computer generated random distribution. In undisturbed cultures, the distribution of fat cells is not random and is consistent with a commitment event in single cells at any cell division during exponential growth followed by divisions of both committed and uncommitted cells. Since insulin affected the number of mature adipocytes only when added after cessation of exponential growth, insulin is not the inducer of commitment but merely enhances lipid production in previously committed cells.  相似文献   

13.
A protocol was developed in 3T3-L1 adipocytes that resulted in the specific desensitization of glycogen synthase activation by insulin. Cells were pretreated for 15 min with 100 nm insulin, and then recovered for 1.5 h in the absence of hormone. Subsequent basal and insulin-induced phosphorylation of the insulin receptor, IRS-1, MAPK, Akt kinase, and GSK-3 were similar in control and pretreated cells. Additionally, enhanced glucose transport and incorporation into lipid in response to insulin were unaffected. However, pretreatment reduced insulin-stimulated glycogen synthesis by over 50%, due to a nearly complete inhibition of glycogen synthase activation. Removal of extracellular glucose during the recovery period blocked the increase in glycogen levels, and restored insulin-induced glycogen synthase activation. Furthermore, incubation of pretreated 3T3-L1 adipocytes with glycogenolytic agents reversed the desensitization event. Separation of cellular lysates on sucrose gradients revealed that glycogen synthase was primarily located in the dense pellet fraction, with lesser amounts in the lighter fractions. Insulin induced glycogen synthase translocation from the lighter to the denser glycogen-containing fractions. Interestingly, insulin preferentially activated translocated enzyme while having little effect on the majority of glycogen synthase activity in the pellet fraction. In insulin-pretreated cells, glycogen synthase did not return to the lighter fractions during recovery, and thus did not move in response to the second insulin exposure. These results suggest that, in 3T3-L1 adipocytes, the translocation of glycogen synthase may be an important step in the regulation of glycogen synthesis by insulin. Furthermore, intracellular glycogen levels can regulate glycogen synthase activation, potentially through modulation of enzymatic localization.  相似文献   

14.
The spatiotemporal dynamics of triglyceride (TG) storage in unilocular adipocytes are not well understood. Here we applied ex vivo technology to study trafficking and metabolism of fluorescent fatty acids in adipose tissue explants. Live imaging revealed multiple cytoplasmic nodules surrounding the large central lipid droplet (cLD) of unilocular adipocytes. Each cytoplasmic nodule harbors a series of closely associated cellular organelles, including micro–lipid droplets (mLDs), mitochondria, and the endoplasmic reticulum. Exogenously added free fatty acids are rapidly adsorbed by mLDs and concurrently get esterified to TG. This process is greatly accelerated by insulin. mLDs transfer their content to the cLD, serving as intermediates that mediate packaging of newly synthesized TG in the large interior of a unilocular adipocyte. This study reveals novel cell biological features that may contribute to the mechanism of adipocyte hypertrophy.  相似文献   

15.
Lipoprotein lipase (LPL) is the enzyme responsible for hydrolysis of circulating triglyceride-rich lipoproteins and is important for storage of adipocyte lipid. To study the regulation of LPL synthetic rate in adipose tissue, primary cultures of isolated rat adipocytes were pulse-labeled with [35S]methionine, and LPL was immunoprecipitated with an LPL-specific antibody. A pulse-chase experiment identified the cellular and secreted forms of LPL as a 55-57-kDa protein. In the presence of heparin, there was a large increase in secretion of newly synthesized LPL from the cells, although heparin did not stimulate cellular LPL synthetic rate. When cells were exposed to insulin for 2 h, pulse-labeling revealed that insulin stimulated a maximal dose-related increase in LPL synthetic rate of 300% of control. This increase in LPL synthetic rate was observed after an exposure to insulin for as little as 60 min and was accompanied by only a 10-25% increase in total protein synthesis. In addition, insulin had no effect on the turnover of intracellular LPL. Using a cDNA probe for LPL, insulin induced a 2-fold increase in the LPL mRNA. Thus, insulin stimulated an increase in specific LPL mRNA in isolated rat adipocytes. This increase in LPL mRNA then leads to an increase in the synthetic rate of the LPL protein.  相似文献   

16.
In the clinical field, cell-based therapies are used to treat bone defects. Adipose tissues contain many osteoblast progenitors, among other cell types. We separated mouse adipose tissue-derived stromal cells (ATSCs) according to their cell adhesive properties. Cells in a fraction adherent to the culture dishes 0.5h after inoculation (AF-0.5) had a potent ability to differentiate into both osteoblasts and adipocytes in vitro. Their differentiation pathways depended on the culture conditions. In these cells, the expression of marker genes for osteoblast differentiation was induced in osteogenic medium. Moreover, the AF-0.5 cells, which were induced to differentiate into osteoblasts in vitro, formed abundant bone tissues in vivo. These results suggest that the AF-0.5 cells have been enriched with bi-potential progenitor cells destined for either osteoblasts or adipocytes. This simple and efficient method for preparing osteoblast progenitor cells from ATSCs may be utilized for bone defect treatment clinically.  相似文献   

17.
Recent research findings postulate that adipocytes and endothelial cells (EC) may share a common progenitor. However, the interlinking pathways between adipose tissue and endothelium, and the differentiation potential of cells to convert from one tissue into the other via progenitor cells have not been elucidated and are therefore the focus of this study. Stromal vascular fraction (SVF) cells were isolated from liposuction aspirates or excised adipose tissue and separated into CD31+ and CD31- populations by magnet-assisted cell sorting. Differentiation to fat tissue was induced in both CD31 fractions after expansion by insulin, dexamethasone, isobutylmethylxanthine, triiodothyronine, pioglitazone, and transferrin. Differentiation was assayed enzymatically and by cell counting. Maturation to endothelium was performed with vascular endothelial growth factor (VEGF), insulin-like growth factor-1 plus 2% fetal calf serum, and confirmed by flow cytometry and tube formation assays on Matrigel. Our results show that the SVF contains a CD31-, S100+ cell type that can differentiate into adipocytes and EC. The SVF also comprises CD31+ cells that, although they have an endothelial phenotype, can be converted into mature adipocytes. These findings demonstrate the potency of SVF cells to perform both adipogenic and endothelial differentiation. Further, they reveal the plasticity of mature cells of mesenchymal origin to undergo conversion from endothelium to adipose tissue and vice versa.  相似文献   

18.
A long-term goal of this research is to develop an in vitro model to study the metabolism, distribution, and fate of chemicals or pharmaceuticals in animals and humans. An important component of such a system is an in vitro model to study bioaccumulation of specific chemicals in adipose tissue. Due to the difficulties in maintaining primary adipocytes in culture and conducting reproducible experiments, transformed adipocyte cell lines have been used as an alternative. In this paper, several rodent preadipocyte cell lines (3T3-L1, 3T3-F442A, and TA1 cells) that differentiate into adipocytes when exposed to the appropriate stimuli are tested as an investigative tool to study naphthalene accumulation. The in vitro model is tested by comparison of its performance to that of primary adipocytes. All the experimental evidence supports the hypothesis that naphthalene accumulation is primarily dependent on the level of intracellular lipid. Furthermore, the level of naphthalene bioaccumulation is linearly correlated with the amount of triglyceride content with the slope of 37.7 +/- 0.5 microg of naphthalene/(mg of triglyceride). Indomethacin/dexamethasone/insulin are shown to be more effective in promoting preadipocyte differentiation than methylisobutylxanthine/dexamethasone/insulin. Additionally, external factors, such as the presence of albumin and serum in the medium, affect the cellular naphthalene uptake by decreasing the amount of naphthalene transported into fat cells. Among the three cell lines tested, 3T3-L1 adipocytes accumulated the highest intracellular lipid and, hence, yielded the highest level of naphthalene accumulation. Its ability to accumulate naphthalene is comparable to that of primary adipocytes. The 3T3-L1 adipocyte model is appropriate for studying the bioaccumulation of xenobiotics that are aromatic hydrocarbons.  相似文献   

19.
Conversion to adipocytes and fatty acid composition were investigated in a clonal bone marrow preadipocyte line (H-1/A). The growing cells exhibited a fibroblastic appearance. After the cessation of growth, triacylglyceride (TG) synthesis in the cells increased as they incorporated precursor from the growth medium and became adipocytes. Hydrocortisone and insulin accelerated the TG synthesis in H-1/A cells in a dose-dependent manner when they were cultured in the growth medium containing 10% horse serum. The rate of conversion to adipocytes was reduced as the concentration of horse serum was decreased, and this reduction was not influenced by the addition of insulin and/or hydrocortisone. These results suggest that conversion to adipocytes of H-1/A cells is primarily dependent on some component(s) of the serum. Conversion to adipocytes of the cells may involve a process of differentiation since the conversion was completely inhibited when the cells were cultured in the presence of bromodeoxyuridine. Fatty acid composition was significantly different between adipose H-1/A cells and adipocytes derived from other marrow preadipocyte line MC3T3-G2/PA6 cells. Unsaturated fatty acids accounted for 76% of the fatty acid composition of adipose H-1/A cells; in contrast, saturated fatty acids constituted 65% of the fatty acid composition of the adipose MC3T3-G2/PA6 cells. These results suggest that there is a heterogeneity of preadipocytes in bone marrow. These two preadipocyte lines thus provide a useful tool for the study of marrow adipocytes and can also be used to analyze the hematopoietic microenvironment through studies of the effect of these cells on hematopoietic cell proliferation.  相似文献   

20.
PTP1B is a negative regulator of insulin signaling pathway. This study investigated the effects of compound CCF06240, a PTP1B inhibitor, on insulin sensitivity and lipid metabolic abnormalities in vivo and in vitro, respectively. The insulin resistant IRM mouse model was induced by HFD. The responses to insulin were determined by OGTT, ITT, and hyperinsulinemic-euglycemic clamp test. The body weight and the levels of serum TC and TG were measured to estimate the lipid metabolism in vivo. Recombinant human GST-PTP1B protein was used to measure the inhibition of CCF06240 on PTP1B activity. The hepatocyte lipid accumulation was induced by high concentrations of FFA and insulin in HepG(2) cells, and evaluated by the Oil Red O method. In IRM mice, the insulin resistance was improved; the body weight and the levels of TC and TG were also reduced by oral CCF06240 administration. In lipid accumulated model cells, CCF06240 was found to reverse the increased PTP1B activity, enhance the insulin-induced tyrosine phosphorylation in insulin signaling pathway, attenuate the FFA-insulin-induced cellular lipid accumulation, and down-regulate the expressions of genes related fatty acid synthesis. These results demonstrated that the PTP1B inhibitor, compound CCF06240, could increase insulin sensitivity through the regulation of insulin signaling pathway, and decrease FFA-insulin-induced hepatocytes lipid accumulation by reducing fatty acid syntheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号