共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Germ-line sex determination in Drosophila melanogaster 总被引:9,自引:0,他引:9
In Drosophila melanogaster, the mechanism of sex determination is substantially different in the germ line and in the soma. In the germ line, the process is not completely cell-autonomous, but requires some signals from the soma. Only some of the genes involved in somatic sex determination are also needed for germ cell development. Recent genetic studies have identified loci required for germ-line sex determination. 相似文献
4.
Mammalian sex differentiation involves the action of a cascade of genes. Discovery of the sex-determining region of the Y chromosome (SRY) marked the beginning of the delineation of the genes in the cascade. Studies of the genetics of mammalian sex reversal and the embryogenesis of the mice are essential in this endeavor. A number of genes involved in the pathway have been identified and all except one of these genes have a putative role in male sex differentiation. Besides SRY being the master switch in male sex differentiation the hierarchical relationship of the genes identified are far from being understood. Similarly, our knowledge of the genetic regulation of female sex differentiation is minimal. Differential screening and gene expression profiling bring a new dimension to the pursuit with the identification of a number of genes previously unknown to be involved in sex differentiation. Wider application of functional genomic techniques and introduction of proteomic analyses are expected to shed light to our understanding of this complicated developmental process. 相似文献
5.
Sex in many species of Hymenoptera (ants, bees and wasps) is determined by a single locus that is heterozygous in females and hemizygous in (haploid) males. Beye and colleagues have now cloned the csd locus in the honeybee Apis mellifera and provide functional evidence that this gene is the primary switch in the sex-determination cascade of honeybees and possibly all Hymenoptera. 相似文献
6.
M Bienz 《Current opinion in cell biology》1992,4(6):955-961
A number of Drosophila proteins have been identified that play key roles in the establishment of active or inactive states of selector gene expression. Interactions between these proteins and their target selector genes are beginning to be understood, shaping our molecular view as to how stable determination of cells is achieved. 相似文献
7.
Variability of genetic sex determination in poeciliid fishes 总被引:9,自引:4,他引:9
Poeciliids are one of the best-studied groups of fishes with respect to sex determination. They present an amazing variety of mechanisms, which span from simple XX-XY or ZZ-ZW systems to polyfactorial sex determination. The gonosomes of poeciliids generally are homomorphic, but very early stages of sex chromosome differentiation have been occasionally detected in some species. In the platyfish Xiphophorus maculatus, gene loci involved in melanoma formation, in different pigmentation patterns and in sexual maturity are closely linked to the sex-determining locus in the subtelomeric region of the X- and Y- chromosomes. The majority of traits encoded by these loci are highly polymorphic. This phenomenon might be explained by the high level of genomic plasticity apparently affecting the sex-determining region, where frequent rearrangements such as duplications, deletions, amplifications, and transpositions frequently occur. We propose that the high plasticity of the sex-determining region might explain the variability of sex determination in Xiphophorus and otherbreak poeciliids. 相似文献
8.
《Plant Growth Regulation》1991,10(2):174-175
Book Review
Molecular and genetic aspects of nitrate assimilationJ.L. Wray and J.R. Kinghorn (Eds.), Oxford, New York, Tokyo: Oxford Science Publications, 1989. xv + 410 pages. £45.00. ISBN 0-19-857696-X 相似文献9.
10.
Molecular aspects of sex determination in mice: an alternative model for the origin of the Sxr region 总被引:3,自引:0,他引:3
C E Bishop A Weith M G Mattei C Roberts 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1988,322(1208):119-124
Using a combination of in situ mapping and DNA analysis with recombinant DNA probes specific for the Sxr region of the mouse Y chromosome, we show that both the gene(s) controlling primary sex determination and the expression of the male-specific antigen H-Y (Tdy and Hya respectively) are located on the minute short arm of the mouse Y chromosome. We demonstrate that the H-Y- variant of Sxr (Sxr') arose by a partial deletion within the Sxr region and propose an alternative model for the generation of the original Sxr region. 相似文献
11.
Large repeated DNA arrays are a major component of the eukaryotic genome, but we know little about their internal organization. Understanding their architecture, however, is critical for describing genome structure and for inferring the mechanisms that shape it. One repeated family that is yielding a picture of how structure, function and recombination mechanisms come together is the ribosomal DNA (rDNA) of Drosophila melanogaster. 相似文献
12.
Establishment of germline sexual identity is critical for production of male and female germline stem cells, as well as sperm versus eggs. Here we identify PHD Finger Protein 7 (PHF7) as an important factor for male germline sexual identity in Drosophila. PHF7 exhibits male-specific expression in early germ cells, germline stem cells, and spermatogonia. It is important for germline stem cell maintenance and gametogenesis in males, whereas ectopic expression in female germ cells ablates the germline. Strikingly, expression of PHF7 promotes spermatogenesis in XX germ cells when they are present in a male soma. PHF7 homologs are also specifically expressed in the mammalian testis, and human PHF7 rescues Drosophila Phf7 mutants. PHF7 associates with chromatin, and both the human and fly proteins bind histone H3 N-terminal tails with a preference for dimethyl lysine 4 (H3K4me2). We propose that PHF7 acts as a conserved epigenetic "reader" that activates the male germline sexual program. 相似文献
13.
14.
15.
The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed. 相似文献
16.
We have used a set of overlapping cloned segments defining a 315 kb (X 10(3) base-pairs) region of Drosophila melanogaster chromosomal DNA to map the sequences associated with the polytene band-interbands (chromomeric units) and with the lethal complementation groups contained within this region. The molecular map positions of the 13 +/- 1 chromomeric units from the 87D5-6 to 87E5, 6 region of the third chromosome were determined by in situ hybridization of selected segments to the polytene chromosomes. The length of the largest chromomeric unit within the 315 kb region is approximately 160 kb, while that for the smallest is less than 7 kb and may be as short as 3 kb. By mapping the breakpoints of deletions within the 315 kb region, we have located its 12 lethal complementation groups, which include the genes coding for acetylcholinesterase (Ace) and xanthine dehydrogenase (rosy). Comparison of the two molecular maps indicates a one-to-one topographical correlation between the genetic and chromomeric units. 相似文献
17.
The signal transduction pathway controlling determination of the identity of the R7 photoreceptor in the Drosophila eye is shown to harbor high levels of naturally occurring genetic variation. The number of ectopic R7 cells induced by the dosage-sensitive Sev S11.1 transgene that encodes a mildly activated form of the Sevenless tyrosine kinase receptor is highly sensitive to the wild-type genetic background. Phenotypes range from complete suppression to massive overproduction of photoreceptors that exceeds reported effects of known single gene modifiers, and are to some extent sex-dependent. Signaling from the dominant gain-of-function Drosophila Epidermal Growth Factor Receptor (DER-Ellipse) mutations is also sensitive to the genetic backgrounds, but there is no correlation with the effects on Sev S11.1 . This implies that different genes and/or alleles modify the two activated receptor genotypes. The evolutionary significance of the existence of high levels of genetic variation in the absence of normal phenotypic variation is discussed. Received: 20 September 1997 / Accepted: 10 November 1997 相似文献
18.
The evolution of sex determination mechanisms is known to be relatively rapid, though recent evidence indicates that certain parts of the mechanism may be more highly conserved. These characteristics establish the sex determination mechanism as a good candidate for the theoretical study of gene network evolution, particularly of networks involved in development. We investigate the short-term evolutionary potential of the sex determination mechanism in Drosophila melanogaster with the aid of a synchronous logical model. We introduce general theoretical concepts such as a network-specific form of mutation, and a notion of functional equivalence between networks. We apply this theoretical framework to the sex determination mechanism and compare it to a population of random networks, enabling us to find features both general to sex determination networks, and particular to the Drosophila network. In general, sex determination networks exist within large sets of functionally equivalent networks all of which satisfy the sex determination task. These large sets are in turn composed of subsets which are mutationally related, suggesting a high degree of flexibility is available without compromising the core functionality. Two particular characteristics of the Drosophila network are found: (a) a parsimonious use of gene interactions, and (b) the network structure can produce a relatively large number of dynamical pattern variations through single network mutations. 相似文献
19.
20.
ATM-related kinases promote repair of DNA double-strand breaks and maintenance of chromosome telomeres, functions that are essential for chromosome structural integrity in all eukaryotic organisms. In humans, loss of ATM function is associated with ataxia telangiectasia, a neurodegenerative disease characterized by extreme sensitivity to DNA damage. Drosophila melanogaster has recently emerged as a useful animal model for analyzing the molecular functions of specific domains of this large, multifunctional kinase. The gene encoding Drosophila ATM kinase (dATM) was originally designated tefu because of the telomere fusion defects observed in atm mutants. In this report, molecular characterization of eight atm (tefu) alleles identified nonsense mutations predicted to truncate conserved C-terminal domains of the dATM protein, as well as two interesting missense mutations. One of these missense mutations localized within a putative HEAT repeat in the poorly characterized N-terminal domain of dATM (atm4), whereas another associated with a temperature-sensitive allele (atm8) changed the last amino acid of the conserved FATC domain. Leveraging this molecular information with the powerful genetic tools available in Drosophila should facilitate future analysis of conserved ATM-mediated molecular mechanisms that are important for telomere maintenance, DNA repair, and neurodegeneration. 相似文献