首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Eukaryotic cells possess systems for sensing nutritional stress and inducing compensatory mechanisms that minimize the consumption of ATP while utilizing alternative energy sources. Such stress can also be imposed by increased energy needs, such as in skeletal muscle of exercising animals. In these studies, we consider the role of the metabolic sensor, AMP-activated protein kinase (AMPK), in the regulation of glucose transport in skeletal muscle. Expression in mouse muscle of a dominant inhibitory mutant of AMPK completely blocked the ability of hypoxia or AICAR to activate hexose uptake, while only partially reducing contraction-stimulated hexose uptake. These data indicate that AMPK transmits a portion of the signal by which muscle contraction increases glucose uptake, but other AMPK-independent pathways also contribute to the response.  相似文献   

2.
3.
4.

Background  

AMP-activated protein kinase (AMPK) has emerged as a significant signaling intermediary that regulates metabolisms in response to energy demand and supply. An investigation into the degree of activation and deactivation of AMPK subunits under exercise can provide valuable data for understanding AMPK. In particular, the effect of AMPK on muscle cellular energy status makes this protein a promising pharmacological target for disease treatment. As more AMPK regulation data are accumulated, data mining techniques can play an important role in identifying frequent patterns in the data. Association rule mining, which is commonly used in market basket analysis, can be applied to AMPK regulation.  相似文献   

5.
The AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that acts as a sensor of cellular energy status switch regulating several systems including glucose and lipid metabolism. Recently, AMPK has been implicated in the control of skeletal muscle mass by decreasing mTORC1 activity and increasing protein degradation through regulation of ubiquitin-proteasome and autophagy pathways. In this review, we give an overview of the central role of AMPK in the control of skeletal muscle plasticity. We detail particularly its implication in the control of the hypertrophic and atrophic signaling pathways. In the light of these cumulative and attractive results, AMPK appears as a key player in regulating muscle homeostasis and the modulation of its activity may constitute a therapeutic potential in treating muscle wasting syndromes in humans.  相似文献   

6.
The AMP-activated protein kinase (AMPK) has been hypothesized to mediate contraction and 5-aminoimidazole-4-carboxamide 1-beta-D-ribonucleoside (AICAR)-induced increases in glucose uptake in skeletal muscle. The purpose of the current study was to determine whether treadmill exercise and isolated muscle contractions in rat skeletal muscle increase the activity of the AMPK alpha 1 and AMPK alpha 2 catalytic subunits in a dose-dependent manner and to evaluate the effects of the putative AMPK inhibitors adenine 9-beta-D-arabinofuranoside (ara-A), 8-bromo-AMP, and iodotubercidin on AMPK activity and 3-O-methyl-D-glucose (3-MG) uptake. There were dose-dependent increases in AMPK alpha 2 activity and 3-MG uptake in rat epitrochlearis muscles with treadmill running exercise but no effect of exercise on AMPK alpha1 activity. Tetanic contractions of isolated epitrochlearis muscles in vitro significantly increased the activity of both AMPK isoforms in a dose-dependent manner and at a similar rate compared with increases in 3-MG uptake. In isolated muscles, the putative AMPK inhibitors ara-A, 8-bromo-AMP, and iodotubercidin fully inhibited AICAR-stimulated AMPK alpha 2 activity and 3-MG uptake but had little effect on AMPK alpha 1 activity. In contrast, these compounds had absent or minimal effects on contraction-stimulated AMPK alpha 1 and -alpha 2 activity and 3-MG uptake. Although the AMPK alpha 1 and -alpha 2 isoforms are activated during tetanic muscle contractions in vitro, in fast-glycolytic fibers, the activation of AMPK alpha 2-containing complexes may be more important in regulating exercise-mediated skeletal muscle metabolism in vivo. Development of new compounds will be required to study contraction regulation of AMPK by pharmacological inhibition.  相似文献   

7.
AMP-activated protein kinase (AMPK) is emerging as an important energy-sensing/signaling system in skeletal muscle. This kinase is activated allosterically by 5'-AMP and inhibited allosterically by creatine phosphate. Phosphorylation of AMPK by an upstream kinase, AMPK kinase (also activated allosterically by 5'-AMP), results in activation. It is activated in both rat and human muscle in response to muscle contraction, the extent of activation depending on work rate and muscle glycogen concentration. AMPK can also be activated chemically in resting muscle with 5-aminoimidazole-4-carboxamide-riboside, which enters the muscle and is phosphorylated to form ZMP, a nucleotide that mimics the effect of 5'-AMP. Once activated, AMPK is hypothesized to phosphorylate proteins involved in triggering fatty acid oxidation and glucose uptake. Evidence is also accumulating for a role of AMPK in inducing some of the adaptations to endurance training, including the increase in muscle GLUT-4, hexokinase, uncoupling protein 3, and some of the mitochondrial oxidative enzymes. It thus appears that AMPK has the capability of monitoring intramuscular energy charge and then acutely stimulating fat oxidation and glucose uptake to counteract the increased rates of ATP utilization during muscle contraction. In addition, this system may have the capability of enhancing capacity for ATP production when the muscle is exposed to endurance training.  相似文献   

8.
9.
AimsThe aim of this study was to determine the effect of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, on monocarboxylate transporter 4 (MCT4) expression in rat skeletal muscle and a prototypic embryonal rhabdomyosarcoma cell line (RD cells).Main methodsWe examined the alteration in Glucose transporter 4 (GLUT4) and MCT4 mRNA levels by quantitative real-time PCR. Alteration in GLUT4 and MCT4 protein levels was examined by Western blotting.Key findingsIn an in vivo study, AICAR increased MCT4 mRNA and protein levels in a fiber-type specific manner. In an in vitro study, AICAR increased MCT4 mRNA and protein levels. Moreover, AICAR-induced MCT4 expression was blocked by Compound C, an AMPK inhibitor.SignificanceIn this study, we found that AMPK activation induced expression of MCT4 in RD cells and rat skeletal muscle in a fiber-type specific manner. These results indicate the possible involvement of an AMPK-mediated pathway associated with MCT4 expression in skeletal muscle.  相似文献   

10.
Muscle contraction causes an increase in activity of 5'-AMP-activated protein kinase (AMPK). This study was designed to determine whether chronic chemical activation of AMPK will increase mitochondrial enzymes, GLUT-4, and hexokinase in different types of skeletal muscle of resting rats. In acute studies, rats were subcutaneously injected with either 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 1 mg/g body wt) in 0.9% NaCl or with 0.9% NaCl alone and were then anesthetized for collection and freezing of tissues. AMPK activity increased in the superficial, white region of the quadriceps and in soleus muscles but not in the deep, red region of the quadriceps muscle. Acetyl-CoA carboxylase (ACC) activity, a target for AMPK, decreased in all three muscle types in response to AICAR injection but was lowest in the white quadriceps. In rats given daily, 1 mg/g body wt, subcutaneous injections of AICAR for 4 wk, activities of citrate synthase, succinate dehydrogenase, and malate dehydrogenase were increased in white quadriceps and soleus but not in red quadriceps. Cytochrome c and delta-aminolevulinic acid synthase levels were increased in white, but not red, quadriceps. Carnitine palmitoyl-transferase and hydroxy-acyl-CoA dehydrogenase were not significantly increased. Hexokinase was markedly increased in all three muscles, and GLUT-4 was increased in red and white quadriceps. These results suggest that chronic AMPK activation may mediate the effects of muscle contraction on some, but not all, biochemical adaptations of muscle to endurance exercise training.  相似文献   

11.
The AMP-activated protein kinase (AMPK) is activated by a fall in the ATP:AMP ratio within the cell in response to metabolic stresses. Once activated, it phosphorylates and inhibits key enzymes in energy-consuming biosynthetic pathways, thereby conserving cellular ATP. The creatine kinase-phosphocreatine system plays a key role in the control of ATP levels in tissues that have a high and rapidly fluctuating energy requirement. In this study, we provide direct evidence that these two energy-regulating systems are linked in skeletal muscle. We show that the AMPK inhibits creatine kinase by phosphorylation in vitro and in differentiated muscle cells. AMPK is itself regulated by a novel mechanism involving phosphocreatine, creatine and pH. Our findings provide an explanation for the high expression, yet apparently low activity, of AMPK in skeletal muscle, and reveal a potential mechanism for the co-ordinated regulation of energy metabolism in this tissue. Previous evidence suggests that AMPK activates fatty acid oxidation, which provides a source of ATP, following continued muscle contraction. The novel regulation of AMPK described here provides a mechanism by which energy supply can meet energy demand following the utilization of the immediate energy reserve provided by the creatine kinase-phosphocreatine system.  相似文献   

12.
13.
5'-AMP-activated protein kinase (AMPK) is a metabolic stress sensor present in all eukaryotes. A dominant missense mutation (R225Q) in pig PRKAG3, encoding the muscle-specific gamma3 isoform, causes a marked increase in glycogen content. To determine the functional role of the AMPK gamma3 isoform, we generated transgenic mice with skeletal muscle-specific expression of wild type or mutant (225Q) mouse gamma3 as well as Prkag3 knockout mice. Glycogen resynthesis after exercise was impaired in AMPK gamma3 knock-out mice and markedly enhanced in transgenic mutant mice. An AMPK activator failed to increase skeletal muscle glucose uptake in AMPK gamma3 knock-out mice, whereas contraction effects were preserved. When placed on a high fat diet, transgenic mutant mice but not knock-out mice were protected against excessive triglyceride accumulation and insulin resistance in skeletal muscle. Transfection experiments reveal the R225Q mutation is associated with higher basal AMPK activity and diminished AMP dependence. Our results validate the muscle-specific AMPK gamma3 isoform as a therapeutic target for prevention and treatment of insulin resistance.  相似文献   

14.
Uncoupling protein 3 (UCP-3), a member of the mitochondrial transporter superfamily, is expressed primarily in skeletal muscle where it may play a role in altering metabolic function under conditions of fuel depletion caused, for example, by fasting and exercise. Here, we show that treadmill running by rats rapidly (30 min) induces skeletal muscle UCP-3 mRNA expression (sevenfold after 200 min), as do hypoxia and swimming in a comparably rapid and substantial fashion. The expression of the mitochondrial transporters, carnitine palmitoyltransferase 1 and the tricarboxylate carrier, is unaffected under these conditions. Hypoxia and exercise-mediated induction of UCP-3 mRNA result in a corresponding four- to sixfold increase in rat UCP-3 protein. We treated extensor digitorum longus (EDL) muscle with 5'-amino-4-imidazolecarboxamide ribonucleoside (AICAR), a compound that activates AMP-activated protein kinase (AMPK), an enzyme known to be stimulated during exercise and hypoxia. Incubation of rat EDL muscle in vitro for 30 min with 2 mM AICAR causes a threefold increase in UCP-3 mRNA and a 1.5-fold increase of UCP-3 protein compared with untreated muscle. These data are consistent with the notion that activation of AMPK, presumably as a result of fuel depletion, rapidly regulates UCP-3 gene expression.  相似文献   

15.
Myostatin (Mstn) is a secreted growth factor predominately expressed in skeletal muscle that negatively regulates skeletal muscle mass. Recent studies have indicated that loss function of myostatin not only increases muscle mass but also improves insulin sensitivity in vivo. In the present report, we demonstrated that myostatin regulates glucose metabolism by promoting glucose consumption and glucose uptake, increasing glycolysis, and inhibiting glycogen synthesis in skeletal muscle cells. Microarray analysis revealed that myostatin upregulates several genes involved in regulating glucose metabolism such as Glut1, Glut4, Hk2, and IL-6. Further investigation of the molecular basis of these phenomena revealed that AMP-activated protein kinase (AMPK), a key component for maintaining energy homeostasis, was activated by myostatin for promotion of glycolysis. Taken together, these findings provide the first experimental evidence that myostatin regulates glucose metabolism through the AMPK signal pathway in muscle cells. Importantly, our findings highlight that continued investigation of the metabolic function of myostatin is necessary for a comprehensive understanding of its active role in the regulation of skeletal muscle energy metabolism.  相似文献   

16.
17.
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.  相似文献   

18.
The AMP-activated protein kinase (AMPK) is an important metabolic sensor/effector that coordinates many of the changes in mammalian tissues during variations in energy availability. We have sought to create an in vivo genetic model of chronic AMPK activation, selecting murine skeletal muscle as a representative tissue where AMPK plays important roles. Muscle-selective expression of a mutant noncatalytic gamma1 subunit (R70Qgamma) of AMPK activates AMPK and increases muscle glycogen content. The increase in glycogen content requires the presence of the endogenous AMPK catalytic alpha-subunit, since the offspring of cross-breeding of these mice with mice expressing a dominant negative AMPKalpha subunit have normal glycogen content. In R70Qgamma1-expressing mice, there is a small, but significant, increase in muscle glycogen synthase (GSY) activity associated with an increase in the muscle expression of the liver isoform GSY2. The increase in glycogen content is accompanied, as might be expected, by an increase in exercise capacity. Transgene expression of this mutant AMPKgamma1 subunit may provide a useful model for the chronic activation of AMPK in other tissues to clarify its multiple roles in the regulation of metabolism and other physiological processes.  相似文献   

19.
Little is known about the role of the central melanocortin system in the control of fuel metabolism in peripheral tissues. Skeletal muscle AMP-activated protein kinase (AMPK) is activated by leptin and serves as a master regulator of fatty acid beta-oxidation. To elucidate an unidentified role of the central melanocortin system in muscle AMPK regulation, we treated conscious, unrestrained mice intracerebroventricularly with the melanocortin agonist MT-II or the antagonist SHU9119. MT-II augmented phosphorylation of AMPK and its target acetyl-CoA carboxylase (ACC) independent of caloric intake. Conversely, AMPK/ACC phosphorylation by leptin was abrogated by the coadministration of SHU9119 or in KKA(y) mice, which centrally express endogenous melanocortin antagonist. Importantly, high-fat-diet-induced attenuation of AMPK/ACC phosphorylation in leptin-overexpressing transgenic mice was not reversed by central leptin but was markedly restored by MT-II. Our data provide evidence for the critical role of the central melanocortin system in the leptin-skeletal muscle AMPK axis and highlight the system as a therapeutic target in leptin resistance.  相似文献   

20.
LKB1 complexed with MO25 and STRAD has been identified as an AMP-activated protein kinase kinase (AMPKK). We measured relative LKB1 protein abundance and AMPKK activity in liver (LV), heart (HT), soleus (SO), red quadriceps (RQ), and white quadriceps (WQ) from sedentary and endurance-trained rats. We examined trained RQ for altered levels of MO25 protein and LKB1, STRAD, and MO25 mRNA. LKB1 protein levels normalized to HT (1 +/- 0.03) were LV (0.50 +/- 0.03), SO (0.28 +/- 0.02), RQ (0.32 +/- 0.01), and WQ (0.12 +/- 0.03). AMPKK activities in nanomoles per gram per minute were HT (79 +/- 6), LV (220 +/- 9), SO (22 +/- 2), RQ (29 +/- 2), and WQ (42 +/- 4). Training increased LKB1 protein in SO, RQ, and WQ (P < 0.05). LKB1 protein levels after training (%controls) were SO (158 +/- 17), RQ (316 +/- 17), WQ (191 +/- 27), HT (106 +/- 2), and LV (104 +/- 7). MO25 protein after training (%controls) was 595 +/- 71. Training did not affect AMPKK activity. MO25 but not LKB1 or STRAD mRNA increased with training (P < 0.05). Trained values (%controls) were MO25 (164 +/- 22), LKB1 (120 +/- 16), and STRAD (112 +/- 17). LKB1 protein content strongly correlated (r = 0.93) with citrate synthase activity in skeletal muscle (P < 0.05). In conclusion, endurance training markedly increased skeletal muscle LKB1 and MO25 protein without increasing AMPKK activity. LKB1 may be playing multiple roles in skeletal muscle adaptation to endurance training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号