首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hearts from 4 week-old weanling pigs were capable of continuous work output when perfused with Krebs-Henseleit buffer containing 11 mM glucose. Perfused hearts metabolized either glucose or fatty acids, but optimum work output was achieved by a combination of glucose plus physiological concentrations (0.1 mM) of either palmitate or erucate. Higher concentrations of free fatty acids increased their rate of oxidation but also resulted in a large accumulation of neutral lipids in the myocardium, as well as a tendency to increased acetylation and acylation of coenzyme A and carnitine. When hearts were perfused with 1 mM fatty acids, the work output declined below control values. Erucic acid is known to be poorly oxidized by isolated rat heart mitochondria and, to a lesser degree, by perfused rat hearts. In addition, it has been reported that erucic acid acts as an uncoupler of oxidative phosphorylation. In isolated perfused pig hearts used in the present study, erucic acid oxidation rates were as high as palmitate oxidation rates. When energy coupling was measured by 31P-NMR, the steady-state levels of ATP and phosphocreatine during erucic acid perfusion did not change noticeably from those during glucose perfusion. It was concluded that the severe decrease in oxidation rates and ATP production resulting from the exposure of isolated pig and heart mitochondria to erucic acid are not replicated in the intact pig heart.  相似文献   

2.
Desmin, being a major intermediate filament of mature muscle cell, interacts with mitochondria within the cell and participates in mitochondria proper localization. The goal of the present study was to assess the effect of aggregate-prone and non-aggregate-prone desmin mutations on mitochondrial calcium uptake. Primary murine satellite cells were transduced with lentiviruses carrying desmin in wild type or mutant form, and were induced to differentiate into myotubes. Four mutations resulting in different degree of desmin aggregates formation were analyzed. Tail domain mutation Asp399Tyr has the mildest impact on desmin filament polymerization, rod domain mutation Ala357Pro causes formation of large aggregates composed of filamentous material, and Leu345Pro and Leu370Pro are considered to be the most severest in their impact on desmin polymerization and structure. For mitochondrial calcium measurement cells were loaded with rhod 2-AM. We found that aggregate-prone mutations significantly decreased [Ca2+]mit, whereas non-aggregate-prone mutations did not decrease [Ca2+]mit. Moreover aggregate-prone desmin mutations resulted in increased resting cytosolic [Ca2+]. However this increase was not accompanied by any alterations in sarcoplasmic reticulum calcium release. We suggest that the observed decline in [Ca2+]mit was due to desmin aggregate accumulation resulting in the loss of desmin mitochondria interactions.  相似文献   

3.
The proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart was decreased by alloxan-diabetes or by perfusion with media containing acetate, n-octanoate or palmitate. The total activity of the dehydrogenase was unchanged. 2. Pyruvate (5 or 25mM) or dichloroacetate (1mM) increased the proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart, presumably by inhibiting the pyruvate dehydrogenase kinase reaction. Alloxan-diabetes markedly decreased the proportion of active dehydrogenase in hearts perfused with pyruvate or dichloroacetate. 3. The total activity of pyruvate dehydrogenase in mitochondria prepared from rat heart was unchanged by diabetes. Incubation of mitochondria with 2-oxo-glutarate plus malate increased ATP and NADH concentrations and decreased the proportion of active pyruvate dehydrogenase. The decrease in active dehydrogenase was somewhat greater in mitochondria prepared from hearts of diabetic rats than in those from hearts of non-diabetic rats. Pyruvate (0.1-10 mM) or dichloroacetate (4-50 muM) increased the proportion of active dehydrogenase in isolated mitochondria presumably by inhibition of the pyruvate dehydrogenase kinase reaction. They were much less effective in mitochondria from the hearts of diabetic rats than in those of non-diabetic rats. 4. The matrix water space was increased in preparations of mitochondria from hearts of diabetic rats. Dichloroacetate was concentrated in the matrix water of mitochondria of non-diabetic rats (approx. 16-fold at 10 muM); mitochondria from hearts of diabetic rats concentrated dichloroacetate less effectively. 5. The pyruvate dehydrogenase phosphate phosphatase activity of rat hearts and of rat heart mitochondria (approx. 1-2 munit/unit of pyruvate dehydrogenase) was not affected by diabetes. 6. The rate of oxidation of [1-14C]pyruvate by rat heart mitochondria (6.85 nmol/min per mg of protein with 50 muM-pyruvate) was approx. 46% of the Vmax. value of extracted pyruvate dehydrogenase (active form). Palmitoyl-L-carnitine, which increased the ratio of [acetyl-CoA]/[CoA] 16-fold, inhibited oxidation of pyruvate by about 90% without changing the proportion of active pyruvate dehydrogenase.  相似文献   

4.
Simultaneous video-microfluorimetry allows experimenters to monitor calcium signals in the cytosol, as well as changes in the membrane potential of the mitochondria, in living cells loaded with both fura2 and rhodamine123 (rhod123). Capsaicin-evoked responses of cultured sensory neurons and transfected HT1080 cells are described below. Polymodal nociceptors [1] or other cells expressing TRPV1 receptors respond to capsaicin application with a rise in the cytosolic calcium level ([Ca2+]c), reaching eventually toxic levels. Capsaicin induces selective permanent morphological changes of the mitochondria before any loss of small cells (type B) in the sensory ganglia can be detected [3]. An unknown link between changes in the mitochondria and cell loss can be investigated by combined functional examination of capsaicin-induced [Ca2+]c changes and reactions of the mitochondria. In most tests, the capsaicin-induced [Ca2+]c elevation occurred before the rising phase of rhod123 waves. Cellular reactions were either transient or sustained (lasting over hundreds of seconds). A transient or a sustained nature of the reactions was slightly concentration-dependent. Fluorescence of the cells changed in complicated ways during repeated tests. Moderate but permanent changes of the cellular responsiveness suggest mild injury, which might be involved in cellular desensitization.Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 82–93, January–February, 2005.  相似文献   

5.
The beneficial effects of in vivo injections (200 mg/kg, twice daily) or in vitro perfusion (5.0 mM) of L-carnitine on an intrinsic abnormality in energy metabolism was investigated in isolated, perfused diabetic rat heart. Hearts were aerobically perfused for 60 min with elevated fatty acid substrate to simulate diabetic conditions. Phosphorus-31 nuclear magnetic resonance spectroscopy revealed a temporal decline in myocardial ATP levels (to approx 82%) during perfusion of diabetic hearts, but not in control hearts. This reduction was prevented by prior treatment in vivo with L-carnitine or by providing L-carnitine acutely in the perfusion medium. Chemical analysis of tissue extracts indicated that L-carnitine injections were effective in replenishing the decrease in total myocardial carnitine content which was present in diabetic hearts and in preventing the accumulation of long chain fatty acyl CoA. Perfusion with L-carnitine also attenuated the elevation of long chain fatty acyl CoA in diabetic hearts. This study gives additional support to the hypothesis that decreases in ATP which occur in the isolated, perfused diabetic heart are correlated with a concomitant elevation in long chain fatty acyl CoA, a known inhibitor of adenine nucleotide translocase. In the presence of elevated exogenous fatty acids, a primary deficiency in the total myocardial carnitine pool would result in elevations in tissue concentrations of long chain fatty acyl CoA since carnitine is a required carrier for transport of fatty acids into mitochondria. Replenishment of the carnitine in vivo was shown to be sufficient to prevent subsequent alteration in long chain fatty acyl CoA and ATP in isolated perfused diabetic hearts despite the burden of elevated fatty acid substrates.  相似文献   

6.
Mitochondrial calcium overload has been implicated in the irreversible damage of reperfused heart. Accordingly, we studied the effect of an oxygen-bridged dinuclear ruthenium amine complex (Ru360), which is a selective and potent mitochondrial calcium uniporter blocker, on mitochondrial dysfunction and on the matrix free-calcium concentration in mitochondria isolated from reperfused rat hearts. The perfusion of Ru360 maintained oxidative phosphorylation and prevented opening of the mitochondrial permeability transition pore in mitochondria isolated from reperfused hearts. We found that Ru360 perfusion only partially inhibited the mitochondrial calcium uniporter, maintaining the mitochondrial matrix free-calcium concentration at basal levels, despite high concentrations of cytosolic calcium. Additionally, we observed that perfused Ru360 neither inhibited Ca2+ cycling in the sarcoplasmic reticulum nor blocked ryanodine receptors, implying that the inhibition of ryanodine receptors cannot explain the protective effect of Ru360 in isolated hearts. We conclude that the maintenance of postischemic myocardial function correlates with an incomplete inhibition of the mitochondrial calcium uniporter. Thus, the chemical inhibition by this molecule could be an approach used to prevent heart injury during reperfusion.  相似文献   

7.
We used 2,3-butanedione monoxime (BDM) to suppress work by the perfused rat heart and to investigate the effects of calcium on NADH production and tissue energetics. Hearts were perfused with buffer containing BDM and elevated perfusate calcium to maintain the rates of cardiac work and oxygen consumption at levels similar to those of control perfused hearts. BDM plus calcium hearts displayed higher levels of NADH surface fluorescence, indicating calcium activation of mitochondrial dehydrogenases. These hearts, however, displayed 20% lower phosphocreatine levels. BDM suppressed the rates of state 3 respiration of isolated mitochondria. Uncoupled respiration was suppressed to a lesser degree, and the state 4 respiration rates were not affected. Double-inhibitor experiments with liver mitochondria using BDM and carboxyatractyloside (CAT) were used to identify the site of inhibition. BDM at low levels (0-5 mM) suppressed respiration. In the presence of CAT at levels that inhibit respiration by 60%, low levels of BDM were without effect. Because these effects were not additive, BDM does not inhibit adenine nucleotide transport. This was supported by an assay of adenine nucleotide transport in liver mitochondria. BDM did not inhibit ATP hydrolysis by submitochondrial particles but strongly suppressed reversed electron transport from succinate to NAD(+). Oxidation of NADH by submitochondrial particles was inhibited by BDM but oxidation of succinate was not. We conclude that BDM inhibits electron transport at site 1.  相似文献   

8.
Subcellular fractionation of tissue in nonaqueous media was employed to study metabolite compartmentation in isolated perfused rat hearts. The mitochondrial and cytosolic concentrations of citrate and 2-oxoglutarate, total concentrations of the glycolytic intermediates and rate of glycolysis were measured in connection with changes in the rate of cellular respiration upon modulation of the ATP consumption by changes of the mechanical work load of the heart. The concentrations of citrate and 2-oxoglutarate in the mitochondria were 16- and 14-fold, respectively, greater than those in the cytosol of beating hearts. The cytosolic citrate concentration was low compared with concentrations which have been employed in demonstrations of the citrate inhibition of glycolysis. In spite of the low activities reported for the tricarboxylate carrier in heart mitochondria, the cytosolic citrate concentration reacted to perturbations of the mitochondrial citrate concentration, and inhibition of glycolysis at the phosphofructokinase step could be observed concomitantly with an increase in the cytosolic citrate concentration. The ΔpH across the inner mitochondrial membrane calculated from the 2-oxoglutarate concentration gradient and the mitochondrial membrane potential calculated from the adenylate distribution gave an electrochemical potential difference of protons compatible with chemiosmotic coupling in the intact myocardium.  相似文献   

9.
A number of reports indicate that a long-chain free fatty acid export system may be operating in mitochondria. In this study, we sought evidence of its existence in rat heart mitochondria. To determine its potential role, we also sought evidence of its activation or inhibition in streptozotocin (STZ)-induced diabetic rat heart mitochondria. If confirmed, it could be a novel mechanism for regulation of long-chain fatty acid oxidation (FAO) in mitochondria. To obtain evidence of its existence, we tested whether heart mitochondria presented with palmitoyl-carnitine can generate and export palmitate. We found that intact mitochondria indeed generate and export palmitate. We have also found that the rates of these processes are markedly higher in STZ-diabetic rat heart mitochondria, in which palmitoyl-carnitine oxidation is also increased. Since mitochondrial thioesterase-1 (MTE-1) hydrolyzes acyl-CoA to CoA-SH + free fatty acid, and uncoupling protein-3 (UCP-3), reconstituted in liposomes, transports free fatty acids, we examined whether these proteins are also increased in STZ-diabetic rat heart mitochondria. We found that both of these proteins are indeed increased. Gene expression profile analysis revealed striking expression of mitochondrial long-chain fatty acid transport and oxidation genes, accompanying overexpression of MTE-1 and UCP-3 in STZ-diabetic rat hearts. Our findings provide the first direct evidence for the existence of a long-chain free fatty acid generation and export system in mitochondria and its activation in STZ-diabetic rat hearts in which FAO is enhanced. We suggest that its activation may facilitate, and inhibition may limit, enhancement of FAO. fatty acid oxidation; diabetes; lipotoxic cardiomyopathy; gene array  相似文献   

10.
Dietary restriction increases life span and delays the development of age-related diseases in rodents. We have recently demonstrated that chronic dietary restriction is beneficial on recovery of heart function following ischemia. We studied whether the metabolic basis of this benefit is associated with alterations in mitochondrial respiration. Male Wistar rats were assigned to an ad libitum-fed (AL) group and a food restricted (FR) group, in which food intake was reduced to 55% of the amount consumed by the AL group. Following an 8-month period of restricted caloric intake, isolated working hearts perfused with glucose and high levels of fatty acids were subjected to global ischemia followed by reperfusion. At the end of reperfusion, total heart mitochondria was respiration was assessed in the presence of pyruvate, tricarboxylic acid intermediates, and palmitoylcarnitine. Recovery of heart function following ischemia was greater in FR hearts compared to AL hearts. Paralleling these changes in heart function was in increase in state 3 respiration with pyruvate. The respiratory control ratios in the presence of pyruvate and tricarboxylic acid intermediates were higher in FR hearts compared to AL hearts, indicating well-coupled mitochondria. Overall energy production, expressed as the ADP:O ratio and the oxidative phosphorylation rate, was also improved in FR hearts. Our results indicate that the beneficial effect of FR on recovery of heart function following ischemia is associated with changes in mitochondrial respiration.  相似文献   

11.
Perfusion of the rat isolated hearts with calcium-free and calcium containing solution revealed a complex and deep myocardial damage called the calcium paradox. The reperfusion of the rat heart with calcium rich media resulted in myoglobin loss from the heart, significant decreasing of ATP and phosphocreatine level, complete uncoupling of respiration and phosphorylation in mitochondria, occurrence of myocardial contracture. Decreasing of sodium level to 30 mM--80 mM in calcium free media exacerbates the heart damage due to the calcium paradox with absence of contracture. Addition of phosphocreatine (1 mM, 5 mM, 10 mM) evoked some restoration of ATP contents in the tissue with appearance of significant contracture. Phosphocreatine exacerbated the loss of myoglobin from the heart subjected to the calcium paradox. A discrepancy between myocardial contracture and degree of cellular damage has been observed during the calcium paradox.  相似文献   

12.
During 24-h in vitro heart preservation and reperfusion, irreversible tissue damage occurs caused by reactive oxygen intermediates, such as superoxide radicals, singlet oxygen, hydrogen peroxide, hydroperoxyl, hydroxyl radicals, as well as the peroxynitrite radical. Reduction of the related oxidative damage of reperfused ischemic tissue by free radical scavengers and metal chelators is of primary importance in maintaining heart function. We assessed whether deferoxamine (DFR) added to a cardioplegia solution decreased free radical formation during 24-h cold (5 degrees C) heart preservation and normothermic reperfusion (37 degrees C) in the Langendorff isolated perfused rat heart. The deferoxamine treated hearts were significantly (p less than .001) better preserved than the control hearts after 24 h of preservation with regard to recovery of left ventricular diastolic pressure, contractility (+dP/dt), relaxation (-dP/dt), creatine kinase release, and lipid peroxidation. DFR preserved cell membrane integrity and maintained 93% of left ventricular contractility. The evidence suggests that DFR reduces lipid peroxidation damage by reducing free radical formation and thereby maintaining normal coronary perfusion flow and myocardial function.  相似文献   

13.
Adrenaline resulted in a reversible 4-fold increase in the amount of pyruvate dehydrogenase in its active non-phosphorylated form in the perfused rat heart within 1 min. The increase was less in extent in hearts from starved or diabetic rats or in hearts from control rats oxidizing acetate, unless pyruvate was added to the perfusion medium. Increases could also be induced by other inotropic agents, supporting the hypothesis that increases in cytoplasmic Ca2+ can be relayed into mitochondria and influence oxidative metabolism.  相似文献   

14.
Summary Mitochondria isolated from heart tissue after a 1-min perfusion with Hanks medium were found to have significantly lower rates of State-3 respiration and respiratory control ratios compared to mitochondria isolated from non-perfused hearts. Examination of the mitochondrial preparations by electron microscopy revealed that a large proportion of the mitochondria isolated from perfused heart tissue were swollen and broken compared to mitochondria from non-perfused hearts.  相似文献   

15.
The relationship between extracellular palmitate and the accumulation of long-chain fatty-acyl coenzyme A with that of high-energy phosphate metabolism was investigated in the isolated perfused diabetic rat heart. Hearts were perfused with a glucose/albumin buffer supplemented with 0, 0.5, 1.2 or 2.0 mM palmitate. 31P-NMR was used to analyze phosphocreatine and ATP metabolism during 1 h of constant-flow recirculation perfusion. At the end of perfusion, frozen samples were taken for chemical analysis of high-energy phosphates and the free and acylated fractions of coenzyme A and carnitine. Perfusion of diabetic hearts with palmitate, unlike control hearts, caused a time-dependent and concentration-dependent reduction in ATP, despite normal and constant phosphocreatine. Concentrations of acid-soluble coenzyme A, long-chain-acyl coenzyme A and total tissue coenzyme A were elevated in palmitate-perfused diabetic hearts, while the total tissue carnitine pool was decreased. Increases in long-chain-acyl coenzyme A correlated with the reduction in myocardial ATP. This reduction in ATP could not be adequately explained by alterations in heart rate, perfusion pressure or vascular resistance.  相似文献   

16.
Mitochondria isolated from rat hearts perfused with adrenaline, and from hearts excised from adrenaline-treated rats, showed an enhanced rate of respiration-dependent Ca2+ uptake. Adrenaline pretreatment did not change the activity of the Na+/Ca2+-antiporter of isolated heart mitochondria. Simultaneous measurements of the membrane potential revealed that perfusion with adrenaline has no significant effect on this parameter during Ca2+ accumulation. The activation of Ca2+ uptake was induced also by the alpha-adrenergic agonist, methoxamine, but not by the beta-adrenergic agonist, isoprenaline. Methoxamine pretreatment also increased the sensitivity of alpha-oxoglutarate dehydrogenase in intact mitochondria to 10 nM--300 nM extramitochondrial Ca2+ during steady-state Ca2+ recycling across the inner membrane. Possible implications of these data for the adrenergic regulation of oxidative metabolism are discussed.  相似文献   

17.
The effects of stearic, oleic, and arachidonic acids on phosphatidylcholine biosynthesis in the hamster heart were investigated. When hamster hearts were perfused with labelled choline in the presence of fatty acids, biosynthesis of phosphatidylcholine was stimulated only by stearic acid. Stearic acid was found to accumulate in unesterified (free) form in the hamster heart after perfusion. The stimulation by stearic acid was mediated in vivo by an enhancement of CTP:phosphocholine cytidylyltransferase activity in the microsomal fraction of the hamster heart and the enzyme activity in the cytosolic fraction was not affected. In contrast with the observations in rat hepatocytes, cytidylyltransferase from the hamster heart was not stimulated directly by stearic acid. The selective activation of the microsomal enzyme when the heart was perfused with stearic acid suggests that activation of the enzyme was mediated via the modification of the membrane by stearic acid.  相似文献   

18.
When intact rat heart mitochondria were pulsed with 150 nmol of CaCl2/mg of mitochondrial protein, only a marginal stimulation of the rate of oxygen consumption was observed. This result was obtained with mitochondria isolated in either the presence or absence of nagarse. In contrast, rat liver mitochondria under similar conditions demonstrated a rapid, reversible burst of respiration associated with energy-linked calcium accumulation. Direct analysis of calcium retention using 45Ca and Millipore filtration indicated that calcium was accumulated by heart mitochondria under the above conditions via a unique energy-dependent process. The rate of translocation by heart mitochondria was less than that of liver mitochondria; likewise the release of bound calcium back into the medium was also retarded. These results suggest that the slower accumulation and release of calcium is characteristic of heart mitochondria. The amound of calcium bound was independent of penetrant anions at low calcium concentrations. Above 100 nmol/mg of mitochondrial protein, the total calcium bound was increased by the presence of inorganic phosphate. Under nonrespiring conditions, a biphasic Scatchard plot indicative of binding sites with different affinities for Ca2+ was observed. The extrapolated constants are 7.5 nmol/mg bound with an apparent half-saturation value of 75 muM and 42.5 nmol/mg bound with half-saturation at 1.15 mM. The response of the reduced State 4 cytochrome b to pulsed additions of Ca2+ was used to calculate an energy-dependent half-saturation constant of 40 muM. When the concentration of free calcium was stabilized at low levels with Ca2+-EGTA buffers, the spectrophotometrically determined binding constant decreased two orders of magnitude to an apparent affinity of 4.16 X 10(-7) M. Primary of calcium transport over oxidative phosphorylation was not observed with heart mitochondria. The phosphorylation of ADP competed with Ca2+ accumulation, depressed the rates of cation transport, and altered the profile of respiration-linked H+ movements. Consistent with these result was the observation that with liver mitochondrial the magnitude of the cytochrome b oxidation-reduction shift was greater for Ca2+ than for ADP, whereas calcium responses never surpassed the ADP response in heart mitochondria. Furthermore, Mg2+ ingibited calcium accumulation by heart mitochondria while having only a slight effect upon calcium transport in liver mitochondria. The unique energetics of heart mitochondrial calcium transport are discussed relative to the regulated flux of cations during the cardiac excitation-relaxation cycle.  相似文献   

19.
The role of endothelial calcium signaling in exercise-enhanced ACh-induced vasorelaxation was examined using male Wistar rats (8~10 wk old) that were divided into control and exercise groups. The exercised animals ran on a treadmill with progressive increments of speed until exhaustion. After decapitation, aortic rings were dissected and loaded with fura 2-AM. After being mounted on a tissue flow chamber, vessels were precontracted with phenylephrine, and ACh-induced endothelial calcium elevation and vasorelaxation were determined simultaneously under an epifluorescence microscope equipped with ratio imaging capability. Our results showed that 1) there was logarithmic correlation between endothelial calcium elevation and vasorelaxation; 2) acute exercise enhanced ACh-induced endothelial calcium elevation and vasorelaxation without altering their relationship; 3) pretreatment with N(omega)-nitro-L-arginine markedly reduced ACh-induced vasorelaxation in both groups but suppressed the calcium response only in the exercise group; and 4) the exercise effect on endothelial calcium elevation was abolished by Ca2+-free buffer or gadolinium. In conclusion, acute exercise increases ACh-induced vasorelaxation by increasing the endothelial calcium influx and the calcium-dependent nitric oxide release.  相似文献   

20.
High-resolution 13C n.m.r. spectroscopy has been used to examine propionate metabolism in the perfused rat heart. A number of tricarboxylic acid (TCA) cycle intermediates are observable by 13C n.m.r. in hearts perfused with mixtures of pyruvate and propionate. When the enriched 13C-labelled nucleus originates with pyruvate, the resonances of the intermediates appear as multiplets due to formation of multiply-enriched 13C-labelled isotopomers, whereas when the 13C-labelled nucleus originates with propionate, these same intermediates appear as singlets in the 13C spectrum since entry of propionate into the TCA cycle occurs via succinyl-CoA. An analysis of the isotopomer populations in hearts perfused with [3-13C]pyruvate plus unlabelled propionate indicates that about 27% of the total pyruvate pool available to the heart is derived directly from unlabelled propionate. This was substantiated by perfusing a heart for 2 h with [3-13C]propionate as the only available exogenous substrate. Under these conditions, all of the propionate consumed by the heart, as measured by conventional chemical analysis, ultimately entered the oxidative pathway as [2-13C] or [3-13C]pyruvate. This is consistent with entry of propionate into the TCA cycle intermediate pools as succinyl-CoA and concomitant disposal of malate to pyruvate via the malic enzyme. 13C resonances arising from enriched methylmalonate and propionylcarnitine are also detected in hearts perfused with [3-13C] or [1-13C]propionate which suggests that 13C n.m.r. may be useful as a non-invasive probe in vivo of metabolic abnormalities involving the propionate pathway, such as methylmalonic aciduria or propionic acidaemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号