首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transplanted bone marrow-derived cells (BMDCs) have been reported to fuse with cells of diverse tissues, but the extremely low frequency of fusion has led to the view that such events are biologically insignificant. Nonetheless, in mice with a lethal recessive liver disease (tyrosinaemia), transplantation of wild-type BMDCs restored liver function by cell fusion and prevented death, indicating that cell fusion can have beneficial effects. Here we report that chronic inflammation resulting from severe dermatitis or autoimmune encephalitis leads to robust fusion of BMDCs with Purkinje neurons and formation of hundreds of binucleate heterokaryons per cerebellum, a 10-100-fold higher frequency than previously reported. Single haematopoietic stem-cell transplants showed that the fusogenic cell is from the haematopoietic lineage and parabiosis experiments revealed that fusion can occur without irradiation. Transplantation of rat bone marrow into mice led to activation of dormant rat Purkinje neuron-specific genes in BMDC nuclei after fusion with mouse Purkinje neurons, consistent with nuclear reprogramming. The precise neurological role of these heterokaryons awaits elucidation, but their frequency in brain after inflammation is clearly much higher than previously appreciated.  相似文献   

2.
Hematopoietic cells have been demonstrated to survive in many nonhematopoietic tissues after transplantation. Apparent “bone marrow-derived” cerebellar Purkinje cells in fact result from fusion events and it has been suggested that fusion may be a natural physiological phenomenon to rescue dysfunctioning cells. Here, we show that fusion of transplanted bone marrow cells with resident Purkinje cells is age-dependent and is strongly enhanced when Purkinje cells are damaged by high-dose irradiation. In addition, Purkinje heterokaryons occur in increased frequencies in the cerebellum of normal, unperturbed, aged mice compared to young animals. Our data suggest that age- and/or irradiation-induced dysfunctioning of Purkinje cells in the cerebellum is required for cell fusion.  相似文献   

3.
Murine cell lines expressing human CD4 are resistant to the fusogenic effect of the human immunodeficiency virus (HIV) envelope. Consequently, they cannot be infected by HIV or form syncytia with HIV envelope-expressing cells. Murine cells could either lack human-specific cofactors necessary for the CD4/envelope-mediated membrane fusion or express inhibitors of this process. To address this question, we have tested the ability of heterokaryons made from CD4-expressing murine cells and human cells to undergo HIV envelope-mediated fusion. We have devised a rapid and specific assay based on the induction of lacZ expression, in which membrane fusion events with HIV-infected cells can be detected by a simple histochemical technique. CD4-positive murine/human heterokaryons, but not murine/simian heterokaryons, were found able to fuse with HIV envelope-expressing cells. In these experiments, the fusion resistant phenotype of murine-CD4 cells could be complemented by human cellular factors.  相似文献   

4.
5-Azacytidine permits gene activation in a previously noninducible cell type   总被引:11,自引:0,他引:11  
C P Chiu  H M Blau 《Cell》1985,40(2):417-424
We previously reported that silent muscle genes in fibroblasts could be activated following fusion with muscle cells to form heterokaryons. This activation did not require changes in chromatin structure involving significant DNA synthesis. We report here that muscle gene activation was never observed when HeLa cells were used as the nonmuscle fusion partner. However, if HeLa cells were treated with 5-azacytidine (5-aza-CR) prior to fusion, muscle gene expression was induced in the heterokaryons. The genes for both an early (5.1H11 cell surface antigen) and a late (MM-creatine kinase) muscle function were activated, but were frequently not coordinately expressed. These results suggest that the expression of two muscle genes, which is usually sequential, is not interdependent. Furthermore, changes induced by 5-aza-CR, presumably in the level of DNA methylation, are required for muscle genes in HeLa cells to be expressed in response to putative trans-acting regulatory factor(s) present in muscle cells.  相似文献   

5.
A method for the isolation of reactivated chick erythrocyte nuclei from heterokaryons was developed. The heterokaryons were produced by fusing chick erythrocytes with HeLa or L cells in the presence of inactivated Sendai virus. At various time intervals after fusion nuclei were isolated directly from the monolayer by treatment with an acidic detergent solution. Chick erythrocyte nuclei were then separated from other nuclei (HeLa or L cell) by centrifugation on sucrose gradients. The purified preparation of reactivated chick erythrocyte nuclei was shown to be free from other nuclei and cytoplasmic contamination. By using L cells which had been labelled with 3H-leucine before fusion or heterokaryons labelled after fusion it was demonstrated that labelled mouse proteins migrate from the cytoplasm of the heterokaryons into the reactivating chick erythrocyte nuclei. 3H-uridine labelling of heterokaryons made by fusing UV-irradiated chick erythrocytes with L cells failed to reveal any significant migration of mouse RNA into the chick erythrocyte nuclei.  相似文献   

6.
How fixed is the differentiated state? Lessons from heterokaryons   总被引:5,自引:0,他引:5  
The differentiated state is highly stable in vivo. Yet, in response to nuclear transplantation, tissue regeneration or cell fusion, the nuclei of differentiated cells exhibit a remarkable capacity to change. I review here the utility of heterokaryons, multinucleated cell hybrids, in elucidating the mechanisms that establish and maintain the differentiated state and yet allow such plasticity.  相似文献   

7.
Previous studies have shown that the senescent phenotype is dominant with respect to DNA synthesis in fusions between late passage and actively replicating human diploid fibroblasts. Brief postfusion treatments with the protein synthesis inhibitor cycloheximide (CHX) or puromycin have been found to significantly delay (by 24-48 h) the inhibition of entry into DNA synthesis of young nuclei in heterokaryons after fusion with senescent cells. A significant fraction of the senescent nuclei incorporated tritiated thymidine in CHX-treated heterokaryons. The optimal duration of exposure to CHX was 1-3 h immediately after fusion, although treatments beginning as late as 9 h after fusion elevated the heterokaryon labeling index. Prefusion treatments with CHX were without a significant effect. These results are consistent with the interpretation that regulatory cell cycle inhibitor(s) which are dependent upon protein synthesis may be present in heterokaryons between senescent and actively replicating cells.  相似文献   

8.
Cell fusion has evolved as an explanation of how transplanted bone marrow cells adopt the phenotype of hepatocytes, Purkinje neurons, skeletal and cardiac muscle cells. In vivo nuclear transfer associated with cell fusion has direct implications for regenerative medicine, but the spontaneous frequency of cell fusion is well below the threshold of therapeutic significance. Increased efficiency could be achieved by utilizing cellular factors known to govern fusion but for this the identity of the hematopoietic cell that fuses with the host cell must be known. Using increasingly lineage-restricted donor bone marrow cell populations we have shown in mouse liver that fusion occurs between host hepatocytes and transplanted myelomonocytic cells such as macrophages. Now it should be feasible to increase the efficiency and assess the potential of cell fusion for the correction of a broad range of somatic cell types that can be targeted by fusion.  相似文献   

9.
CD4+ cells derived from the human cell lines U87MG and SCL1 cannot be infected by human immunodeficiency virus type 1 (HIV-1) or fuse with cells expressing the HIV-1 envelope. This block was complemented in heterokaryons with HeLa cells and probably reflects the absence of cellular factors necessary for membrane fusion. Since U87MG cells expressing CD4 are permissive to HIV-2, distinct cellular factors could be required for fusion mediated by two related human retroviruses.  相似文献   

10.
Extinction of muscle-specific properties in somatic cell heterokaryons   总被引:4,自引:0,他引:4  
In studies of gene regulation using somatic cell fusion techniques, the analysis of heterokaryons circumvents several problematic aspects of the more traditional approach utilizing proliferating hybrid cells. We have analyzed the expression of muscle specific properties in heterokaryons between muscle and nonmuscle cells in order to investigate whether differentiating cells contain regulatory factors that repress the expression of alternative developmental pathways. Heterokaryons and cybrids were derived from polyethylene glycol-mediated fusion of differentiated mononucleate chicken myocytes with mouse melanoma cells, mouse melanoma cytoplasts, chicken fibroblasts, or other chicken myocytes. Our results demonstrate that fusion of a myocyte with a nonmyogenic cell generally results in extinction of muscle-specific properties in the immediate fusion product. Myocyte X melanoma heterokaryons ceased to express the skeletal muscle forms of myosin, desmin and creatine kinase, reinitiated DNA synthesis, and showed a loss of spontaneous fusion competence within 96 hr after their formation. Although chicken myocyte X mouse melanoma heterokaryons showed extinction of muscle specific properties, they continued to synthesize protein and to incorporate [3H]hypoxanthine, presumably due to the continued production of constitutive chicken HPRT. That presence of the melanoma nucleus was required for extinction to be observed was demonstrated by the continued expression of muscle proteins in cybrids between chicken myocytes and melanoma cytoplasts. Significantly, heterokaryons between chicken myocytes and chicken fibroblasts also exhibited extinction of muscle proteins, demonstrating for the first time that extinction is not restricted to fusions in which at least one parental cell type was derived from an established cell line. Our results strongly support the notion that extinction reflects cell-type specific gene regulatory mechanisms operative during development.  相似文献   

11.
Marsupial x eutherian cell hybrids would be very useful for studies of mammalian genetics and cell biology. A critical step in the formation of such hybrids is the fusion of cells to form heterokaryons. We have examined many different combinations of marsupial and eutherian cells for their ability to fuse, and we have found that all combinations yielded heterokaryons, but with different frequencies, depending on the cell types used. Ranked in order of decreasing ability to fuse with eutherian cells, the marsupial cell types were; established lines, primary diploid fibroblasts and lymphocytes. In all fusion experiments there was a marked preference for the formation of homokaryons compared with heterokaryons. It was possible to control the numbers and types of heterokaryons formed by varying the input ratio of parental cells.  相似文献   

12.
Several types of culture cells with limited life span (rat embryo fibroblasts, rat chondrocytes and mouse premacrophages) were found to be unable to induce the reactivation of DNA synthesis in the nuclei of non-dividing differentiated cells (mouse peritoneal resident macrophages) in heterokaryons. By contrast, malignant HeLa cells have this ability. In heterokaryons formed by fusion of mouse macrophages with HE239 cells (Syrian hamster fibroblasts transformed with a ts mutant of the SV40 virus), DNA synthesis in macrophage nuclei is reactivated only at the permissive temperature (33° C), at which viral T antigen is stable. Immortalization of rat chondrocytes by transfection with p53 gene enables to induce DNA synthesis in macrophage nuclei upon fusion. All the evidence indicates that the function of immortalizing oncogenes is necessary for the resumption of the DNA synthesis in macrophage nuclei in heterokaryons.  相似文献   

13.
Fusion of chick erythrocytes with human primary fibroblasts results in the formation of heterokaryons in which the inactive chick nuclei become reactivated. The expression of chick DNA repair functions was investigated by the analysis of the DNA repair capacity after exposure to ultraviolet (UV) irradiation of such heterokaryons obtained after fusion of chick erythrocytes with normal human or xeroderma pigmentosum (XP) cells of complementation groups A, B, C and D. Unscheduled DNA synthesis (UDS) in normal human nuclei in these heterokaryons is suppressed during the first 2–4 days after fusion. The extent and duration of this suppression is positively correlated with the number of chick nuclei in the heterokaryons. Suppression is absent in heterokaryons obtained after fusion of chicken embryonic fibroblasts with XP cells (complementation group A and C).Restoration of DNA repair synthesis is found after fusion in XP nuclei of all complementation groups studied. It occurs rapidly in XP group A nuclei, starting one day after fusion and reaching near normal human levels after 5–8 days. In nuclei of the B, C and D group increased levels of UDS are found 5 days after fusion. At 8 days after fusion the UDS level is about 50% of that found in normal human nuclei. The pattern of UDS observed in the chick nuclei parallels that of the human counterpart in the fusion. A fast complementation pattern is also observed in chick fibroblast-XP group A heterokaryons resulting within 24 h in a UDS level comparable with that in chick fibroblast-normal human heterokaryons. In heterokaryons obtained after fusion of chick fibroblasts with XP group C cells UDS remains at the level of chick cells. These data suggest that reactivation of chick erythrocyte nuclei results in expression of repair functions which are able to complement the defects in the XP complementation groups A, B, C and D.  相似文献   

14.
Although most mammalian cell lines can utilize either nicotinic acid or nicotinamide for the biosynthesis of nicotinamide adenine dinucleotide (NAD), thymidine kinase-deficient, mouse 3T3–4F cells are unable to utilize nicotinic acid. When 3T3–4E cells were fused with human D98/AH2 cells, autoradiography showed that the resultant heterokaryons synthesized NAD from nicotinic acid at rates comparable to the human parental cell. The rate of nicotinic acid utilization in heterokaryons remained unchanged over the fourday period of study following cell fusion. In contrast to the results observed with heterokaryons, nicotinic acid utilization was markedly reduced in hybrid cells. Of 100 hybrid clones examined at four or five days following cell fusion, 60 utilized nicotinic acid at rates less than one tenth that of the parental human cell. Similar results were observed in hybrid clones at nine or ten days following fusion. Uniformly high rates of NAD biosynthesis were observed in hybrid clones with nicotinamide as the precursor. This excludes the possibility that the reduction in nicotinic acid utilization in hybrid cells is due to a general metabolic dysfunction. The biochemical mechanism by which nicotinic acid utilization is markedly reduced has not been determined with certainty, however, several observations suggest genetic suppression.  相似文献   

15.
Abstract— The DNA content of mouse Purkinje neurons was investigated employing a biochemical approach. Material for the biochemical assay was provided by means of a sedimentation velocity separation technique which yields bulk quantities of well-preserved Purkinje perikarya in a high degree of purity. The same amount of DNA/cell was recorded for mixed cerebellar cell somata (7·6 ± 0±2 pg/cell), as for the Purkinje perikarya enriched fractions (7±2 & 0·2 pg/cell). No evidence could be found for the existence of a tetraploid DNA complement in mouse Purkinje neurons despite indications to the contrary from a parallel cytophotometric study.  相似文献   

16.
Purkinje cells are vulnerable to a number of physical, chemical, and genetic insults during development and maturity. Normal development of these cells depends on the cell-cell interactions between granule and astroglial cell populations. Apoptotic death in Purkinje neurons had been shown to be associated with cell cycle activation, and new DNA synthesis is associated with Purkinje cell death in staggerer and lurcher mutant mice. Here using an in vitro organotypic slice culture model from 9 (P9) and 4 days (P4) old postnatal rats we show that the cyclin dependent kinase (cdk) inhibitors (roscovitine, olomoucine, and flavopiridol) protect the Purkinje cells from cell death. The results are more pronounced in the cerebellar sections from P4 rats. Analysis of Purkinje neurons in sections from P4 rats after 1 week of culturing showed that while there were very limited calbindin positive neurons in the untreated sections the cdk inhibitor treated sections had a notably higher number. Although treatment with cdk inhibitors inhibited Purkinje cell loss significantly, the morphology of these neurons was abnormal, with stunted dendrites and axons. Since the retinoblastoma protein (Rb) is the major pocket protein involved in determining the differentiated state of neurons we examined the effect of over-expressing Rb in the organotypic cultures. Rb overexpression significantly inhibited the Purkinje cell death and these neurons maintained their normal morphology. Thus our studies show that the cell death in Purkinje neurons observed in organotypic cultures is cell cycle dependent and the optimal survival requires Rb.  相似文献   

17.
Regulation of cytoplasmic microtubule complex (CMTC) organization was studied in cultured human fibroblasts and mouse macrophages by somatic cell fusion. The heterokaryons stained with antitubulin antibody had fibroblast-like CMTC even 72 hours after fusion. There was no change in CMTC pattern when more than one macrophage had fused with one fibroblast. However, the macrophage CMTC was expressed in heterokaryons when the former were located at the periphery of the heterokaryon. To evaluate the role of existing CMTC in determining the CMTC of heterokaryons, the heterokaryons were treated with nocodazole to depolymerize the CMTC and then allowed to recover. The resultant CMTC was fibroblast like.  相似文献   

18.
The cytoplasmic factor responsible for chromosome condensation was introduced into mouse zygotes at different times after fertilization by fusion of the zygotes with metaphase I oocytes. In 72% of heterokaryons obtained after fusion of early zygotes (14-18 hr post-human chorionic gonadotrophin (HCG) with oocytes, the male and female pronuclei of the zygote decondensed. At the same time, the oocyte chromosomes became enclosed in a nuclear envelope and decondensed to an interphase state. However, in the rest of the heterokaryons, the chromatin of the pronuclei condensed to metaphase chromosomes, thus resulting in three sets of chromosomes. Fusion of zygotes that had begun DNA synthesis (20-22 hr post-HCG) with oocytes induced chromosome condensation of the pronuclei in 76% of the cases. In some heterokaryons, however, the oocyte chromosome decondensed to an interphase state similar to the zygote pronuclei. Fusion between late zygotes (27-29 hr post-HCG) with oocytes resulted in chromosome condensation of the pronuclei in all heterokaryons. On the basis of these results, the formation of the pronuclei and their progression toward mitosis in the zygote may be explained by changing levels of a metaphase factor in the cell, or by a balance between interphase and metaphase factors.  相似文献   

19.
The requirements for activation of the mouse alpha-fetoprotein (AFP) gene in transient heterokaryons were investigated. For this purpose, the 7-kilobases of DNA flanking the 5' end of the AFP gene were linked to a mouse major histocompatibility complex (MHC) class I structural gene. The fusion gene was stably integrated at different sites into mouse L-cells, which do not transcribe the AFP gene. Transient heterokaryon fusions demonstrated that the silent AFP-MHC gene and the endogenous AFP gene were activated by factors present in HepG2 cells, a liver-derived cell line, but not by those in HeLa cells. Activation was detected at the protein level in single heterokaryons by using monoclonal antibodies against the cell surface protein and at the mRNA level in populations of cells. The AFP promoter alone was sufficient for activation could be used for DNA transfer strategies to identify genes which can activate AFP promoter elements in trans.  相似文献   

20.
Genetic determinants of metabolic cooperation were studied by fusing chick erythrocytes to HGPRT- mammalian cells. Heterokaryons were then tested for their ability to incorporate [3H]hypoxanthine and to transfer radioactive material to HGPRT- recipient cells. Chick erythrocytes (CE) have nuclei which are inactive but contain the HGPRT gene and some cytoplasmic HGPRT enzyme activity. They are unable, however, to cooperate with HGPRT- cells. Of the two mammalian cell lines used, the human GM29 line is HGPRT- and capable of functioning as a receptor cell in cooperation experiments with HGPRT+ cells. The HGPRT- mouse A9 line on the other hand is unable to cooperate. Immediately after fusion, both types of heterokaryons incorporated [3H]hypoxanthine, indicating the presence of some chick HGPRT enzyme contributed by the erythrocyte partner at the time of fusion. While the CE-GM29 heterokaryons participated in metabolic cooperation shortly after fusion, the CE-A9 heterokaryons did not. However, four days after fusion, i.e., at a time when the erythrocyte nucleus had been reactivated, the CE-A9 heterokaryons did cooperate. This suggests that in CE-A9 heterokaryons the genes required for metabolic cooperation are expressed by the previously dormant chick erythrocyte nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号