首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提取基因组进行检测是酵母研究过程中的必要步骤之一。以毕赤酵母菌株GS115作为研究对象,主要成分为0.2 mol/L醋酸锂和1% SDS的酵母裂解液能高效的裂解酵母细胞壁。与两种酵母基因组提取试剂盒相比,该方法从相同体积的酵母培养液中获得的基因组的量高5倍以上,并且操作简便、快速,能在2 h内完成一次提取过程,极大地缩短了时间。以GS115中的内源AOX基因为目的基因,对提取的基因组进行PCR检测和Southern杂交检测,进一步验证了基因组的质量。因此,本文建立了一种简便、快速、经济而高效的酵母基因提取方法。  相似文献   

2.
3.
The relative concentration of mitochondrial DNA in the yeast, Saccharomycescerevisiae has been examined under a variety of different growth conditions by means of an isotope dilution procedure which is shown to yield accurate estimates of mitochondrial DNA content in small samples of this yeast. Under a derepression scheme in which only limited cell proliferation occurs, mitochondrial DNA exhibited nearly a doubling in relative amount. The concentration of mitochondrial DNA was also observed to fluctuate depending upon the strain, growth phase and carbon source included in the growth media. Our results indicate that the relative proportion of mitochondrial DNA does indeed vary according to a variety of different conditions that the cells are subjected to.  相似文献   

4.
In both budding and fission yeast, a large number of ribonucleotides are incorporated into DNA during replication by the major replicative polymerases (Pols α, δ and ?). They are subsequently removed by RNase H2-dependent repair, which if defective leads to replication stress and genome instability. To extend these studies to humans, where an RNase H2 defect results in an autoimmune disease, here we compare the ability of human and yeast Pol δ to incorporate, proofread, and bypass ribonucleotides during DNA synthesis. In reactions containing nucleotide concentrations estimated to be present in mammalian cells, human Pol δ stably incorporates one rNTP for approximately 2000 dNTPs, a ratio similar to that for yeast Pol δ. This result predicts that human Pol δ may introduce more than a million ribonucleotides into the nuclear genome per replication cycle, an amount recently reported to be present in the genome of RNase H2-defective mouse cells. Consistent with such abundant stable incorporation, we show that the 3′-exonuclease activity of yeast and human Pol δ largely fails to edit ribonucleotides during polymerization. We also show that, like yeast Pol δ, human Pol δ pauses as it bypasses ribonucleotides in DNA templates, with four consecutive ribonucleotides in a DNA template being more problematic than single ribonucleotides. In conjunction with recent studies in yeast and mice, this ribonucleotide incorporation may be relevant to impaired development and disease when RNase H2 is defective in mammals. As one tool to investigate ribonucleotide incorporation by Pol δ in human cells, we show that human Pol δ containing a Leu606Met substitution in the polymerase active site incorporates 7-fold more ribonucleotides into DNA than does wild type Pol δ.  相似文献   

5.
6.
A method for large scale isolation of a native deoxyribonucleohistone complex from yeast is described. Crude chromatin, obtained after disrupting yeast cells at low ionic strength, contains a large amount of lipids, partially due to contaminating membranes. Most of them are removed by a Triton X-100 treatment, followed by step-gradient centrifugation. About 90% of the pellet may be solubilized by mild procedures, the composition of the soluble material being: histone/DNA = 1.0;nonhistone proteins/DNA = 0.55; RNA/DNA = 0.18. Histones can be obtained with high purity. Micrococcal nuclease digests DNA to yield a series of oligomeric fragments, with an average repeat length of about 160 base pairs. Circular dichroism spectra show that (theta) 270 is reduced by about 30% when compared to pure DNA and that chromosomal proteins are not denatured. These results indicate that the components of the complex conserve the native state.  相似文献   

7.
Insertion of a genetic marker into the ribosomal DNA of yeast   总被引:38,自引:0,他引:38  
Jack W. Szostak  Ray Wu 《Plasmid》1979,2(4):536-554
Plasmid pBR322 carrying the yeast LEU2+ gene transforms leu yeast into LEU+ at a low frequency by integration at homologous chromosomal DNA. When one-half of the yeast rDNA repeat unit (BglII-A) is inserted into the plasmid, the frequency of yeast transformation increases 100- to 200-fold, in proportion to the increased amount of homologous repetitive rDNA available for integration. When the other half of the repeat unit (BglII-B) is inserted into the plasmid, the transformation frequency increases by a factor of 104, and the transformants are very unstable. It is likely that this fragment of rDNA contains a yeast origin of replication. This plasmid is a useful vector for cloning fragments of yeast DNA in yeast. We have used the LEU2+ gene, inserted into the rDNA locus, as a genetic marker for mapping the rDNA, in a procedure analogous to the use of antibiotic resistance transposons in the mapping of bacterial genes. Yeast ribosomal DNA is on chromosome XII between asp5 and ura4 as determined by mitotic linkage. Genetic analysis of markers inserted at the rDNA locus should be a useful tool for studying the conservation of sequence homology and the conservation of copy number of repeated genes.  相似文献   

8.
The effects of hydrogen peroxide on yeast Saccharomyces cerevisiae were assessed by measuring gene conversion at the trp 5 locus and the amount of thymine glycols in DNA using a monoclonal antibody specific to this base modification.Our results show that: (a) hydrogen peroxide-induced mitotic gene conversion in yeast strain D7M1 was dose-dependent in the low dose range where no toxicity was observed; (b) in the low dose range, the frequency of gene conversion depended on the temperature of the treatment, with more conversion at 25°C than at 15°C; (c) thymine glycols were induced in DNA in a dose-dependent manner following exposure of cells to up to 400 mM hydrogen peroxide; (d) there was little difference in the amount of thymine glycols formed in DNA when treatment occurred at either 25°C or 15°C.  相似文献   

9.
10.
The yeast PDC1 gene coding for the fermentative enzyme pyruvate decarboxylase was isolated. This DNA sequence was used to identify the corresponding messenger RNA by hybridization. It could be shown that the synthesis of pyruvate decarboxylase is efficiently regulated by variations in the amount of PDC1 mRNA. Very low levels of PDC1 mRNA were found in cells growing in a medium containing ethanol. Glucose addition to these cells leads to a rapid accumulation of PDC1 mRNA. The PDC1 mRNA levels found in different mutants and in cells growing in media containing carbon sources other than glucose or ethanol suggest that the amount of PDC1 mRNA in yeast cells is affected by a number of different factors.  相似文献   

11.
A primase activity which permits DNA synthesis by yeast DNA polymerase I on a single-stranded circular phi X174 or M13 DNA or on poly(dT)n has been extensively purified by fractionation of a yeast enzyme extract which supports in vitro replication of the yeast 2-microns plasmid DNA (Kojo, H., Greenberg, B. D., and Sugino, A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 7261-7265). Most of this DNA primase activity was separated from DNA polymerase activity, although a small amount remained associated with DNA polymerase I. The primase, active as a monomer, has a molecular weight of about 60,000. The primase synthesizes oligoribonucleotides of discrete size, mainly eight or nine nucleotides, in the presence of single-stranded template DNA and ribonucleoside 5'-triphosphates; it utilizes deoxyribonucleoside 5'-triphosphates as substrate with 10-fold lower efficiency. Product size, chromatographic properties, alpha-amanitin resistance, and molecular weight of the primase activity distinguish it from RNA polymerases I, II, and III. The DNA products synthesized by both primase and DNA polymerase I on a single-stranded DNA template were 200-500 nucleotides long and covalently linked to oligoribonucleotides at their 5'-ends. Addition of yeast single-stranded DNA-binding protein (Arendes, J., Kim, K. C., and Sugino, A. (1983) Proc. Natl. Acad. Sci. U.S. A. 80, 673-677) stimulated the DNA synthesis 2-3-fold.  相似文献   

12.
Summary Recombinational repair is the means by which DNA double-strand breaks (DSBs) are repaired in yeast. DNA divergence between chromosomes was shown previously to inhibit repair in diploid G1 cells, resulting in chromosome loss at low nonlethal doses of ionizing radiation. Furthermore, 15–20% divergence prevents meiotic recombination between individual pairs of Saccharomyces cerevisiae and S. carlsbergensis chromosomes in an otherwise S. cerevisiae background. Based on analysis of the efficiency of DSB-induced chromosome loss and direct genetic detection of intragenic recombination, we conclude that limited DSB recombinational repair can occur between homoeologous chromosomes. There is no difference in loss between a repair-proficient Pms+ strain and a mismatch repair mutant, pms1. Since DSB recombinational repair is tolerant of diverged DNAs, this type of repair could lead to novel genes and altered chromosomes. The sensitivity to DSB-induced loss of 11 individual yeast artificial chromosomes (YACs) containing mouse or human (chromosome 21 or HeLa) DNA was determined. Recombinational repair between a pair of homologous HeLa YACs appears as efficient as that between homologous yeast chromosomes in that there is no loss at low radiation doses. Single YACs exhibited considerable variation in response, although the response for individual YACs was highly reproducible. Based on the results with the yeast homoeologous chromosomes, we propose that the potential exists for intra- YAC recombinational repair between diverged repeat DNA and that the extent of repair is dependent upon the amount of repeat DNA and the degree of divergence. The sensitivity of YACs containing mammalian DNA to ionizing radiation-induced loss may thus be an indicator of the extent of repeat DNA.  相似文献   

13.
DNA polymerase I and DNA primase complex in yeast   总被引:10,自引:0,他引:10  
Chromatographic analysis of poly(dT) replication activity in fresh yeast extracts showed that the activities required co-fractionate with the yeast DNA polymerase I. Since poly(dT) replication requires both a primase and a DNA polymerase, the results of the fractionation studies suggest that these two enzymes might exist as a complex in the yeast extract. Sucrose gradient analysis of concentrated purified yeast DNA polymerase I preparations demonstrates that the yeast DNA polymerase I does sediment as a complex with DNA primase activity. Two DNA polymerase I peptides estimated at 78,000 and 140,000 Da were found in the complex that were absent from the primase-free DNA polymerase fraction. Rabbit anti-yeast DNA polymerase I antibody inhibits DNA polymerase I but not DNA primase although rabbit antibodies are shown to remove DNA primase activity from solution by binding to the complex. Mouse monoclonal antibody to yeast DNA polymerase I binds to free yeast DNA polymerase I as well as the complex, but not to the free DNA primase activity. These results suggest that these two activities exist as a complex and reside on the different polypeptides. Replication of poly(dT) and single-stranded circular phage DNA by yeast DNA polymerase I and primase requires ATP and dNTPs. The size of the primer produced is 8 to 9 nucleotides in the presence of dNTPs and somewhat larger in the absence of dNTPs. Aphidicolin, an inhibitor of yeast DNA polymerase I, is not inhibitory to the yeast DNA primase activity. The primase activity is inhibited by adenosine 5'-(3-thio)tri-phosphate but not by alpha-amanitin. The association of yeast DNA polymerase I and yeast DNA primase can be demonstrated directly by isolation of the complex on a column containing yeast DNA polymerase I mouse monoclonal antibody covalently linked to Protein A-Sepharose. Both DNA polymerase I and DNA primase activities are retained by the column and can be eluted with 3.5 M MgCl2. Part of the primase activity can be dissociated from DNA polymerase on the column with 1 M MgCl2 and this free primase activity can be detected as poly(dT) replication activity in the presence of Escherichia coli polymerase I.  相似文献   

14.
15.
The budding yeast Saccharomyces cerevisiae is a major model organism for important biological processes such as mitotic growth and meiotic development, it can be a human pathogen, and it is widely used in the food-, and biotechnology industries. Consequently, the genomes of numerous strains have been sequenced and a very large amount of RNA profiling data is available. Moreover, it has recently become possible to quantitatively analyze the entire yeast proteome; however, efficient and cost-effective high-throughput protein profiling remains a challenge. We report here a new approach to direct and label-free large-scale yeast protein identification using a tandem buffer system for protein extraction, two-step protein prefractionation and enzymatic digestion, and detection of peptides by iterative mass spectrometry. Our profiling study of diploid cells undergoing rapid mitotic growth identified 86% of the known proteins and its output was found to be widely concordant with genome-wide mRNA concentrations and DNA variations between yeast strains. This paves the way for comprehensive and straightforward yeast proteome profiling across a wide variety of experimental conditions.  相似文献   

16.
Fractions containing a high molecular weight form (Mr approximately equal to 2 X 10(6] of the activity that replicates in vitro both the 2-micron yeast DNA plasmid and the chromosomal autonomously replicating sequence ars 1 can be prepared from cells of the budding yeast Saccharomyces. Protein complexes from the fractions associate in vitro with the replication origins of these DNA elements, as determined by electron microscopy. In the present study, the high molecular weight replicative fraction has been characterized in further detail. The DNA synthetic activity in the high molecular weight fraction was bound to the DNA and could be isolated with it. This binding of the replicating activity to the DNA was greatly reduced in the absence of the 2-micron origins of replication. Association of the protein complexes with DNA depended on the amount of replicating activity added, was sensitive to 0.2 M KCl, and exhibited a requirement for rATP and deoxyribonucleoside triphosphates. It was not blocked, however, by the DNA polymerase inhibitor aphidicolin or by the RNA polymerase inhibitor alpha-amanitin. The lack of inhibition by aphidicolin suggests that the deoxyribonucleoside triphosphates may function as cofactors in the binding of protein complexes to DNA or as substrates for a polymerizing activity such as a primase. Binding of the protein complexes as well as actual DNA replication were heat sensitive in the high molecular weight fraction prepared from the temperature-sensitive mutant of the cell division cycle cdc 8. This suggests that the cdc 8 gene product is present in a replicative protein complex and strengthens the conclusion that the presence of the protein complexes on the DNA is associated with replication. Using independent enzyme assays, several other possible replication proteins (including DNA polymerase I, DNA ligase, DNA primase, and DNA topoisomerase II) have been identified directly in the high molecular weight replicative fraction. All of these results provide support for the idea that a protein complex (or replisome ) is involved in the replication of both the extrachromosomal 2-micron DNA and chromosomal DNA in yeast.  相似文献   

17.
18.
Waghmare SK  Caputo V  Radovic S  Bruschi CV 《BioTechniques》2003,34(5):1024-8, 1033
Sophisticated genome manipulation requires the possibility to modify any intergenic or intragenic DNA sequence at will, without leaving large amounts of undesired vector DNA at the site of alteration. To this end, a series of vectors was developed from a previous gene knockout plasmid system to integrate nonselectable foreign DNA at any desired genomic location in yeast, with a minimum amount of residual plasmid DNA. These vectors have two mutated Flp recognition targets (FRT) sequences flanking the KanMX4 gene and multiple sites for subcloning the DNA fragment to be integrated. The selectable marker can be recycled by Flp site-specific excision between the identical FRTs, thereby allowing the integration of further DNA fragments. With this system, the NLS-tetR-GFP and DsRed genes were successfully integrated at the thr1 locus, and the RVB1 gene was tagged at the C-terminus with the V5-epitope-6-histidine tag. This plasmid system provides for a new molecular tool to integrate any DNA fragment at any genome location in [cir+] yeast strains. Moreover, the system can be extrapolated to other eukaryotic cells in which the FLP/FRT system functions efficiently.  相似文献   

19.
20.
The initiation of eukaryotic DNA replication is preceded by the assembly of prereplication complexes (pre-RCs) at chromosomal origins of DNA replication. Pre-RC assembly requires the essential DNA replication proteins ORC, Cdc6, and Cdt1 to load the MCM DNA helicase onto chromatin. Saccharomyces cerevisiae Noc3 (ScNoc3), an evolutionarily conserved protein originally implicated in 60S ribosomal subunit trafficking, has been proposed to be an essential regulator of DNA replication that plays a direct role during pre-RC formation in budding yeast. We have cloned Schizosaccharomyces pombe noc3(+) (Spnoc3(+)), the S. pombe homolog of the budding yeast ScNOC3 gene, and functionally characterized the requirement for the SpNoc3 protein during ribosome biogenesis, cell cycle progression, and DNA replication in fission yeast. We showed that fission yeast SpNoc3 is a functional homolog of budding yeast ScNoc3 that is essential for cell viability and ribosome biogenesis. We also showed that SpNoc3 is required for the normal completion of cell division in fission yeast. However, in contrast to the proposal that ScNoc3 plays an essential role during DNA replication in budding yeast, we demonstrated that fission yeast cells do enter and complete S phase in the absence of SpNoc3, suggesting that SpNoc3 is not essential for DNA replication in fission yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号