首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fine structure of the zoospores of Urospora penicilliformis (Roth) Aresch. (Chlorophyceae) is described. Of special interest is the flagellar apparatus. The proximal part of each of the 4 flagella is ribbon-shaped and contains nine wings attached to the peripheral double tubules. The flagellar root system originates from the flagellar bases and includes striated fibrous roots, passing close to the nucleus, and cruciate nine-stranded microtubular roots along the four corners of the cell. The Golgi bodies produce numerous vesicles, concentrating apically in the cell; they are presumed to be of importance for the attachment of the zoospore.  相似文献   

2.
The flagellar apparatus of Urospora penicilliformis (Roth) Aresch. is unique, or at least very unusual among green algae. The flagellar axonemes are rigid, and contain wing-like projections. There are no central microtubules in the most proximal part of the axoneme. The transition region contains a series of electron dense transverse lamellae rather than a single septum, and lacks a stellate pattern. There is no cartwheel pattern in the proximal part of the basal bodies. The latter are associated with four different types of fibrous elements: ascending striated fibers that attach to an electron dense plate in the papillar center, lateral striated fibers that parallel microtubular roots, fibrous elements that link adjacent basal bodies, and finally two massive striated fibers that descend into the cell, passing closely along the nucleus (system II fibers, or rhizoplasts). Each of the four microtubular flagellar roots is sandwiched between two system I striated structures. The roots are probably equal; they contain proximally four, and distally up to eight microtubules. Based on the zoospore flagellar apparatus, it is concluded that the multinucleate U. penicilliformis is related to the Ulvaphyceae. Finally, a possible explanation in functional terms is given for the peculiar external morphology and behavior of the zoospore.  相似文献   

3.
Peranema trichophorum (Ehrenberg) Stein, a colorless phagotrophic euglenoid flagellate, has a typically euglenoid microtubular root complement. Striated root components, relatively uncommon in euglenoids, are connected to the basal bodies and to a microtubular root. The flagellar system of Peranema consists of three unequal microtubular roots which extend anteriorly beneath the reservoir membrane, and narrow-band striated roots (periodicity = 29–33 nm) which connect one of the four basal bodies to the movable rodorgan of the feeding apparatus. An inter basal body striated fiber forms a three-way connection between one particular microtubular root, a flagellar basal body, and the striated roots. A striated fibril (periodicity = 18–25 nm), which may be an extension of the striated root system, extends beneath the reservoir membrane. Associated with the striated fibril and the striated roots are cisternae of smooth endoplasmic reticulum.  相似文献   

4.
Summary Emergence of zoospores ofOedogonium and their subsequent developmental changes have been studied using live material and sections prepared for light and electron microscopy. Release commences with rupture of the cell wall at its pre-weakened site near the apical caps. The pliable protoplast of the zoospore becomes completely spherical once free of the wall; it is enclosed within the hyaline vesicle which expands continuously and then disappears. Meanwhile, as the flagella become active, the zoospore begins to elongate and its dome starts to protrude from a circular constriction where the flagella are inserted. Once free of the hyaline vesicle, it is actively motile for a variable period, during which elongation continues. The motile phase ceases when the zoospore begins to vibrate, whereupon the flagella are all violently shed. Soon after this, the constriction disappears from around the dome which becomes more pointed; the immobile cell now elongates further, increasing in volume. The cell periphery contains numerous contractile vacuoles. Zoospore elongation may be associated with a proliferation of longitudinal microtubules, and once the flagella are shed, the flagellar rootlet system disintegrates, probably releasing the rootlet microtubules. Mechanisms involved in the release of the zoospore are also discussed.  相似文献   

5.
The three-dimensional structure of the flagellar apparatus in Woloszynskia sp. was determined. This recently discovered dinoflagellate possesses two basal bodies that are offset from one another and lie at an angle of approximately 110°. The transverse basal body is associated with a striated fibrous root assemblage that consists of two differently staining fibrous portions with identical striation periodicity. Unlike the transverse striated fibrous roots reported in other dinoflagellates, this assemblage extends to the cell's right beyond the proximal end of the transverse basal body. The striated fibrous root complex is attached to the anterior end of the longitudinal microtubular root by a broad striated fibrous connective. The longitudinal basal body is also associated with the longitudinal microtubular root. The flagellar opening of each emerging axoneme is surrounded by a striated collar. The striated collars are linked to one another by a striated fibrous, striated collar connective. The variations and similarities of the flagellar apparatus and the ventral ridge/striated collar connective in Woloszynskia sp. are compared to similar components in other dinoflagellates.  相似文献   

6.
The three-dimensional structure of the flagellar apparatus in the gonyaulacoid dinoflagellate. Ceratium hirundinella var. furcoïdes (Schröder) Hub.-Pest. was determined using serial section electron microscopy. The flagellar apparatus is quite large and consists of several components. The two basal bodies nearly abut at their proximal ends and are separated by an angle of approximately 120° The broad longitudinal microtubular root extends from the cell's left edge of the longitudinal basal body and bends around the sulcal/cingular depression into the cell's left antapical horn. A transverse striated fibrous root is associated with the transverse basal body and a narrow electron dense extension is present along the anterior edge of the transverse basal body. This study revealed severa1 hitherto unreported fibrous components of the flagellar apparatus that link the various microtubular and fibrous components to themselves and to the two striated collars. A large striated fibrous connective links the two striated collars to one another. This fibrous connective is linked to another striated fibrous connective that originates from the longitudinal basal body and lies perpendicular to the longitudinal microtubular root. The readily identifiable and numerous components of the Ceratium flagellar apparatus are comparable to those of other dinoflagellates. The combined presence of well dpveloped striated collars, a striated collar connective, and a basal body angle of approximately 120° indicates that this flagellar apparatus is most like that described for Peridinioid dinoflagellates. Important similarities are also noticeable between this flagellar apparatus and that of Oxyrrhis marina.  相似文献   

7.
The three-dimensional structure of the flagellar apparatus in the dinoflagellate Oxyrrhis marina has been reinvestigated and found to consist of several previously unknown components and component combinations that appear strikingly similar to those of some gymnodinoid taxa. The flagellar apparatus of this dinoflagellate is asymmetric and extremely complex consisting of a longitudinal and a transverse basal body that gives rise to eight structurally different components. The only posteriorly directed component is the large microtubular root that consists of 45–50 microtubules at its origin and is attached proximally to a perpendicularly oriented striated fibrous component. Arising from each basal body, two striated fibrous roots with different periodicities extend to the cell's left. A single stranded microtubular root with associated electron dense material emanates from the transverse basal body and also extends to the cell's left. A striated fibrous connective arises from the longitudinal basal body and extends toward the cell's right ventral surface and terminates near the sub-thecal microtubular system. A compound root consisting of microtubules and electron dense material also originates from the longitudinal basal body and extends ventrally into the anterior region of the tentacle. Structural similarities between the parallel striated fibrous roots of Oxyrrhis and Polykrikos are discussed as are flagellar apparatus similarities among other gymnodinoid dinoflagellates. A diagrammatic reconstruction of the Oxyrrhis flagellar apparatus is also presented.  相似文献   

8.
M A Farmer  R E Triemer 《Bio Systems》1988,21(3-4):283-291
The flagellar apparatus of euglenoids consists of two functional basal bodies, three unequal microtubular roots subtending the reservoir, and a fourth band of microtubules nucleated from one of the flagellar roots and subtending the reservoir membrane. The flagellar apparatus of some euglenoids may contain additional basal bodies, striated roots ("rhizoplasts"), fibrous roots, striated connecting fibers between basal bodies, layered structures, or various electron-dense connective substances. With the possible exception of Petalomonas cantuscygni, nearly all euglenoids are biflagellate although the length of one flagellum may be highly reduced. The flagellar transition zone and number of basal bodies are highly variable among species. In recent years a cytoplasmic pocket that branches off from the reservoir has been discovered. The microtubules of the ventral flagellar root are continuous with the microtubules which line this pocket. Based on positional and structural similarities, this structure is believed to be homologous with the MTR/cytostome of bodonids. Coupled with other ultrastructural and biochemical data, the fine structure of the flagellar apparatus supports the belief that the euglenoid flagellates are descendant from bodonid ancestors.  相似文献   

9.
The flagellar apparatus of the small prymnesiophytePrymnesium patellifera has been analysed and a reconstruction is presented. Externally, the cell carries two sub-equal flagella and a short non-coiling haptonema. Within the cell, there are four microtubular roots and a number of fibrous bands, the latter interconnecting the two basal bodies and the haptonema base. One of the roots (r1) consists of a sheet of up to 25 microtubules originating close to the proximal extremity of the haptonema base, but the other three roots are composed of between 1 and 4 microtubules only. Distally, a large striated fibrous auxiliary connecting root extends across the anterior part of the cell linking root r1 and a mitochondrial profile on the opposite side of the cell. The arrangement of the components of the flagellar apparatus ofP. patellifera is commensurate with the general pattern found in many prymnesiophytes other than members of the Pavlovales, but there are a number of differences in detail from the other species described hitherto.  相似文献   

10.
The ultrastructure of Woloszynskia limnetica Bursa was examined using serial thin section electron microscopy. Sections of W. limnetica reveal numerous chloroplast profiles without any obvious pyrenoids. The extensive pusular complex consists of a "smooth" part and a part lined with electron-dense particles. The nucleus is located in the episome. A stigma (= eyespot) consisting of numerous electron-dense globules is situated beneath the amphiesmal vesicles of the sulcal groove. The longitudinal microtu-bular root extends between the stigma and the amphiesma vesicles. Subthecal fibers occur in conjunction with the microtubules and the stigma. Both flagellar exit apertures are encircled by a broad striated collar, each giving rise to a fiber that extends along the pusular canal opening. The striated collars are interconnected by the ventral ridge fiber. The basal part of the transverse flagellum has, in addition to the normal paraxonemal rod (= striated strand or fiber), a semicircular structure consisting of fibrils. The flagellar apparatus is complex but possesses components typically found in the Dinophyceae. The longitudinal mi-crotubular root is broad and is connected to both striated collars. The transverse basal body gives rise to the transverse microtubular root, which in turn is associated with microtubules that extend to the interior of the cell and with the transverse striated root. The transitional region of both basal bodies possesses a distinctive fibrous ring attached to each microtubular triplet by short fibers that collectively appear as spokes of a wheel. Not unexpectedly, the flagellar apparatus of Woloszynskia limnetica is much like that of the related Woloszynskia sp.; however, some dif ferences were discovered. A phylogenetic relationship between Woloszynskia limnetica, W. coronata ( Wolosz.) Thompson, and W. sp. is indicated based on similarities in pusule and stigma structure .  相似文献   

11.
The ultrastructure of the vegetative cell and zoospore of Characiochloris acuminata Lee et Bold (Chlorangiellaceae, Tetrasporales, Chlorophyceae) is described.

The vegetative cell is distinctive in having numerous contractile vacuoles which are randomly distributed in the cytoplasm and visible through the fissures of the parietal chloroplast. A single pyrenoid, embedded in the chloroplast, is penetrated by cytoplasmic canals which are lined by the chloroplast envelope. The vegetative cell is attached to the substrate or host by two flagellar remnants (retained from the zoospore stage), each of which is ensheathed in a gelatinous tube through the cell wall at the cell base. The basal bodies are apparently abscissed from the flagellar shaft by a unit membrane which becomes continuous with the plasma membrane.

The zoospore is biflagellate, with the flagella equal in length, smooth and longer than the cell body. The flagellar sheath is characteristically undulate and the two flagellar bases are connected by a dense interflagellar fibre. The large nucleus has a conspicuously inflated nuclear envelope and the pyrenoid is similar to that of the vegetative cell.  相似文献   

12.
The differentiation of male gametes of the marine red alga Ptilota densa was studied by electron microscopy. Mature primary spermatangia are enveloped by a single cell wall and possess a clearly polar subcellular organization. The nucleus is situated apical to large, striated, fibrous vacuoles which are apparently formed by the repeated fusion of dictyosome vesicles. The transformation and liberation of spermatia from spermatangia involve both the secretion of the fibrous vacuoles at the base of the cell and the subsequent rupturing of the spermatangial cell wall. Liberated spermatia are coated with a thin mucilage layer and contain numerous small vesicles and several mitochondria and dictyosomes. The nucleus is cup-shaped and generally lacks a limiting envelope. These findings are discussed in relation to other light and electron microscopic studies of differentiating spermatangia in red algae.  相似文献   

13.
R. A. Andersen 《Protoplasma》1985,128(2-3):94-106
Summary Flagellated vegetative cells of the colonial golden algaSynura uvella Ehr, were examined using serial sections. The two flagella are nearly parallel as they emerge from a flagellar pit near the apex of the cell. The photoreceptor is restricted to swellings on the flagella in the region where they pass through the apical pore in the scale case and the swellings are not associated with the cell membrane or an eyespot. A unique ring-like structure surrounds the axonemes of both flagella at a level just above the transitional helix. The basal bodies are interconnected by three striated, fibrous bands. Four short (<100 nm) microtubules lie between the basal bodies at their proximal ends. Two rhizoplasts extend down from the basal bodies and separate into numerous fine striated bands which lie over the nucleus. Three- and four-membered microtubular roots arise from the rhizoplasts and extend apically together. As the roots reach the cell anterior, the three-membered root bends and curves clockwise to form a large loop around the flagella; the four-membered root bends anticlockwise and terminates under the distal end of the three-membered root as it completes the loop. There are four absolute orientations, termed Types 1–4, in which the flagellar apparatus can occur. With each orientation type the positions of the Golgi body, nucleus, rhizoplasts, chloroplasts and microtubular roots change with respect to the flagella, basal bodies and photoreceptor. Two new basal bodies appear in pre-division cells, and three short microtubules appear in a dense substance adjacent to each new basal body. Based upon the positions of new pre-division basal bodies, a hypothesis is proposed to explain why there are four orientations and how they are maintained through successive cell divisions.  相似文献   

14.
The flagellar apparatus of Pyrobotrys has a number of features that are typical of the Chlorophyceae, but others that are unusual for this class. The two flagella are inserted at the apex, but they extend to the side of the cell toward the outside of the colony, here designated as the ventral side. Four basal bodies are present, two of which extend into flagella. Four microtubular rootlets alternate between the functional and accessory basal bodies. In each cell, the two ventral rootlets are nearly parallel, but the dorsal rootlets are more widely divergent. The rootlets alternate between two and four microtubules each. A striated distal fiber connects the two functional basal bodies in the plane of the flagella. Two additional, apparently nonstriated, fibers connect the basal bodies proximal to the distal fiber. Another striated fiber is associated with each four-membered rootlet near its insertion into the flagellar apparatus. A fine periodic component is associated with each two-membered rootlet. A rhizoplast-like structure extends into the cell from each of the functional basal bodies. The arrangement of these components does not reflect the 180° rotational symmetry that is usually present in the Chlorophyceae, but appears to be derived from a more symmetrical ancestor. It is suggested that the form of the flagellar apparatus is associated with the unusual colony structure of Pyrobotrys.  相似文献   

15.
The detailed structure of the flagellar apparatus has been determined in a small dinoflagellate of the genus Gymnodinium. Although diminutive, this dinoflagellate possesses a complex flagellar apparatus consisting of a posteriorly directed microtubular root, a transverse striated fibrous root, several striated fibrous connectives that attach the basal bodies to one another as well as to the different roots, and a conspicuous non-striated fibrous connective that directly links the posteriorly directded microtubular root with the extended lobe of the nucleus. This represents the second discovery of a nuclear connective linked to the flagellar apparatus in the Dinophyceae but is the first report to elucidate the spatial relationships of the connective with the flagellar apparatus and the cell. A detailed diagrammatic reconstruction is provided and the similarities between these flagellar apparatus features are compared with those known for other dinoflagellates. Additionally, the structure and displacement of the nuclear connective are compared with nuclear connectives described in other protists.  相似文献   

16.
Phacus pleuronectes (O. F. Müller) Dujardin is a phototrophic euglenoid with small discoid chloroplasts, a flat rigid body, and longitudinally arranged pellicular strips. The flagellar apparatus consisted of two basal bodies and three flagellar roots typical of many phototrophic euglenoids but also had a large striated fiber that connected the two basal bodies and associated with the ventral root. The three roots, in combination with the dorsal microtubular band, extended anteriorly and formed the major cytoskeletal elements supporting the reservoir membrane and ultimately the pellicle. A cytoplasmic pocket arose in the reservoir/canal transition region. It was supported by the ventral root and a C-shaped band of electron-opaque material that lined the cytoplasmic side of the pocket. A large striated fiber extended from this C-shaped band toward the reservoir membrane. The striated fibers in the basal apparatus and associated with the microtubule-reinforced pocket in P. pleuronecte s appear to be similar to those of the phagotrophic euglenoids.  相似文献   

17.
The Ultrastructure of Microthamnion zoospores is described (exclusive of the finer details of the flagellar apparatus). The zoospores have a typical chlorophycean morphology but, in addition, many unique features. The chloroplasts contain starch but no pyrenoid. Thylakoids may run from one edge of the chloroplast to the other and usually anastomose into 2- to 8-membered stacks. The internal morphology is highly polarized and characterized by an intimate proximity and constant spacing between many organelle membranes. All the organelles are asymmetrically distributed within the cell in a precise manner. The anterior region of the zoospore is attenuated into a neck which contains a single, massive mitochondrion. A fibrous rhizoplast lies beside the mitochondrion and appears to connect the flagellar apparatus directly with the outer membrane of the nuclear envelope. In addition, this outer membrane is extended over a distance of several microns to eventually lie in close proximity to the basal bodies. Oil vacuoles and lipid bodies are restricted to the posterior end of the zoospore.  相似文献   

18.
The flagellar apparatus of the marine dinoflagellate Amphidinium rhynchocephalum Anissimowa was examined using the techniques of rapid freezing/freeze substitution and serial thin section three dimensional reconstruction. The flagellar apparatus is composed of two basal bodies that are offset from one another and lie at an angle of approximately 150° The transverse basal body is associated with two individual microtubules that extend from the proximal end of the basal body toward the flagellar opening. One of these microtubules is closely appressed to a striated fibrous root that also extends from the proximal base of the transverse basal body. The longitudinal basal body is associated with a nine member microtubular root that extends from the proximal end of the basal body toward the posterior of the cell. The longitudinal microtubular root and the transverse striated fiber are connected by a striated connective fiber. In addition to the microtubules associated with the transverse and longitudinal basal bodies, a group of microtubules originates adjacent to one of the transverse flagellar roots and extends into the cytoplasm. Vesicular channels extend from the flagellar openings to the region of the basal bodies where they expand to encompass the various connective structures of the flagellar apparatus. The possible function and evolutionary importance of these structures is discussed.  相似文献   

19.
The biflagellate alga Chlamydomonas reinhardi was studied with the light and electron microscopes to determine the behavior of flagella in the living cell and the structure of the basal apparatus of the flagella. During normal forward swimming the flagella beat synchronously in the same plane, as in the human swimmer's breast stroke. The form of beat is like that of cilia. Occasionally cells swim backward with the flagella undulating and trailing the cell. Thus the same flagellar apparatus produces two types of motion. The central pair of fibers of both flagella appear to lie in the same plane, which coincides with the plane of beat. The two basal bodies lie in a V configuration and are joined at the top by a striated fiber and at the bottom by two smaller fibers. From the area between the basal bodies four bands of microtubules, each containing four tubules, radiate in an X-shaped pattern, diverge, and pass under the cell membrane. Details of the complex arrangement of tubules near the basal bodies are described. It seems probable that the connecting fibers and the microtubules play structural roles and thereby maintain the alignment of the flagellar apparatus. The relation of striated fibers and microtubules to cilia and flagella is reviewed, particularly in phytoflagellates and protozoa. Structures observed in the transitional region between the basal body and flagellar shaft are described and their occurrence is reviewed. Details of structure of the flagellar shaft and flagellar tip are described, and the latter is reviewed in detail.  相似文献   

20.
The fine structure of the quadriflagellate zoospores of Draparnaldia glomerata (Vauch.) Agardh is described with emphasis on the flagellar root system and compared with the flagellar apparatus of related green algae. It is demonstrated that the flagellar root system in Draparnaldia is similar to that of the zoospore of Uronema belkae. Common features include presence of a cruciate root system (formula 2–5–2–5), prominent striated distal fibre connecting opposite basal bodies, a system I striated root component associated with the 2–stranded root, association of electron dense material with the 5–stranded root, mode of arrangement of the basal bodies in the absolute configuration model, and presence of four striated peripheral fibres interconnecting adjacent basal bodies. Differences exist in the shape of the striated peripheral fibres, the origin of the 2– and 5– stranded roots in the proximal part of the flagellar apparatus, and the architecture and striation pattern of the proximal part of the system I fibre that detaches from the 2–stranded root between adjacent basal bodies. Both the 2– and 5–stranded roots originate near the basal bodies and descend deeply into the zoospore. One of the 5–stranded roots passes near the eyespot of the chloroplast. The implications of these findings for the taxonomic position of the genus Draparnaldia are discussed. In addition, an evaluation is given of the present status of the order Chaetophorales. Suggestions are given to standardize some aspects of the current terminology of the cruciate flagellar root system in green algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号