首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The fine‐scale spatial genetic structure (SGS) of alpine plants is receiving increasing attention, from which seed and pollen dispersal can be inferred. However, estimation of SGS may depend strongly on the sampling strategy, including the sample size and spatial sampling scheme. Here, we examined the effects of sample size and three spatial schemes, simple‐random, line‐transect, and random‐cluster sampling, on the estimation of SGS in Androsace tapete, an alpine cushion plant endemic to Qinghai‐Tibetan Plateau. Using both real data and simulated data of dominant molecular markers, we show that: (i) SGS is highly sensitive to sample strategy especially when the sample size is small (e.g., below 100); (ii) the commonly used SGS parameter (the intercept of the autocorrelogram) is more susceptible to sample error than a newly developed Sp statistic; and (iii) the random‐cluster scheme is susceptible to obvious bias in parameter estimation even when the sample size is relatively large (e.g., above 200). Overall, the line‐transect scheme is recommendable, in that it performs slightly better than the simple‐random scheme in parameter estimation and is more efficient to encompass broad spatial scales. The consistency between simulated data and real data implies that these findings might hold true in other alpine plants and more species should be examined in future work.  相似文献   

2.
3.
A total of 892 individuals sampled from a wild soybean population in a natural reserve near the Yellow River estuary located in Kenli of Shandong Province (China) were investigated.Seventeen SSR (simple sequence repeat) primer pairs from cultivated soybeans were used to estimate the genetic diversity of the population and its variation pattern versus changes of the sample size (sub-samples),in addition to investigating the fine-scale spatial genetic structure within the population.The results showed relatively high genetic diversity of the population with the mean value of allele number (A) being 2.88,expected heterozygosity (He) 0.431,Shannon diversity index (/) 0.699,and percentage of polymorphic loci (P) 100%.Sub-samples of different sizes (ten groups) were randomly drawn from the population and their genetic diversity was calculated by computer simulation.The regression model of the four diversity indexes with the change of sample sizes was computed.As a result,27-52 individuals can reach 95% of total genetic variability of the population.Spatial autocorrelation analysis revealed that the genetic patch size of this wild soybean population is about 18 m.The study provided a scientific basis for the sampling strategy of wild soybean populations.  相似文献   

4.
A total of 892 individuals sampled from a wild soybean population in a natural reserve near the Yellow River estuary located in Kenli of Shandong Province (China) were investigated. Seventeen SSR (simple sequence repeat) primer pairs from cultivated soybeans were used to estimate the genetic diversity of the population and its variation pattern versus changes of the sample size (sub-samples), in addition to investigating the fine-scale spatial genetic structure within the population. The results showed relatively high genetic diversity of the population with the mean value of allele number (A) being 2.88, expected heterozygosity (He) 0.431, Shannon diversity index (I) 0.699, and percentage of polymorphic loci (P) 100%. Sub-samples of different sizes (ten groups) were randomly drawn from the population and their genetic diversity was calculated by computer simulation. The regression model of the four diversity indexes with the change of sample sizes was computed. As a result, 27–52 individuals can reach 95% of total genetic variability of the population. Spatial autocorrelation analysis revealed that the genetic patch size of this wild soybean population is about 18 m. The study provided a scientific basis for the sampling strategy of wild soybean populations. __________ Translated from Journal of Fudan University (Natural Science), 2006, 45(3): 322–327 [译自: 复旦学报 (自然科学版)]  相似文献   

5.
We analysed the change of spatial genetic structure (SGS) of reproductive individuals over time in an expanding Pinus halepensis population. To our knowledge, this is the first empirical study to analyse the temporal component of SGS by following the dynamics of successive cohorts of the same population over time, rather than analysing different age cohorts at a single time. SGS is influenced by various factors including restricted gene dispersal, microenvironmental selection, mating patterns and the spatial pattern of reproductive individuals. Several factors that affect SGS are expected to vary over time and as adult density increases. Using air photo analysis, tree-ring dating and molecular marker analysis we reconstructed the spread of reproductive individuals over 30 years beginning from five initial individuals. In the early stages, genotypes were distributed randomly in space. Over time and with increasing density, fine-scale (< 20 m) SGS developed and the magnitude of genetic clustering increased. The SGS was strongly affected by the initial spatial distribution and genetic variation of the founding individuals. The development of SGS may be explained by fine-scale environmental heterogeneity and possibly microenvironmental selection. Inbreeding and variation in reproductive success may have enhanced SGS magnitude over time.  相似文献   

6.
Xu X  Lu BR  Chen YH  Xu M  Rong J  Ye P  Chen J  Song Z 《Molecular ecology》2006,15(6):1535-1544
Determining the genetic structure of an in situ conserved population can provide insight into the dynamics of population genetic processes associated with successful plant conservation. We used 21 microsatellite loci to analyse the genetic relationships among individuals (n = 813) collected from a small Oryza rufipogon population conserved since 1993 in Hunan Province of China. The analysis revealed four distinct genetic subpopulations (F(ST) = 0.145) without geographic isolation. One subpopulation was composed of possible introgressed individuals, two subpopulations were composed of seed recruits and their descendants, and the fourth subpopulation consisted of reintroduced individuals, seed recruits and their descendants. Positive spatial genetic structures were detected by spatial autocorrelation statistics at the population (c. 63 m) and subpopulation levels (11-30 m), but the degree of autocorrelation was stronger at the population level. These results showed that prejudging the cryptic structure is important before autocorrelation analysis for the entire population. Our study suggests that population history can be a significant determinant on population structure for plant restoration projects.  相似文献   

7.
We investigated the genetic structure of Eryngium alpinum (Apiaceae) in an Alpine valley where the plant occurs in patches of various sizes. In a conservation perspective, our goal was to determine whether the valley consists of one or several genetic units. Habitat fragmentation and previous observations of restricted pollen/seed dispersal suggested pronounced genetic structure, but gene dispersal often follows a leptokurtic distribution, which may lead to weak genetic structure. We used nine microsatellite loci and two nested sampling designs (50 × 50 m grid throughout the valley and 2 × 2 m grid in two 50 × 10 m quadrats). Within the overall valley, F -statistics and Bayesian approaches indicated high genetic homogeneity. This result might be explained by: (1) underestimation of long-distance pollen/seed dispersal by in situ experiments and (2) too recent fragmentation events to build up genetic structure. Spatial autocorrelation revealed isolation by distance on the overall valley but this pattern was much more pronounced in the 50 × 10 m quadrats sampled with a 2-m mesh. This was probably associated with limited primary seed dispersal, leading to the spatial clustering of half-sibs around maternal plants. We emphasize the interest of nested sampling designs and of combining several statistical tools.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 667–677.  相似文献   

8.
江雨佳  王国英  莫路锋 《生态学报》2016,36(19):6246-6255
由于土壤碳通量的空间异质性很强,传统的随机抽样方法无法对区域土壤碳通量进行准确估算,而多点采样需耗费大量的人力及设备成本,因此确定适当的采样点数量及分布策略对于区域土壤碳通量的测算非常重要。提出一种基于湿度空间分布特征的小尺度土壤碳通量空间采样策略:首先利用无线传感网密集测量区域的土壤湿度,根据湿度数据的空间分布特征划分监测区域,通过Hammond Mc Cullagh方程计算各子区域内的最优采样点数量,最终确定整个监测区域的空间采样点部署策略。提出的方法考虑了各子区域间土壤碳通量空间分布的差异,使得采样点的部署位置与土壤碳通量的分布具有较好的相关性。研究结果证明:土壤碳通量部署策略能够获得比均匀部署策略、随机部署策略更高的区域土壤碳通量估算准确度。  相似文献   

9.
赵彬彬  牛克昌  杜国祯 《生态学报》2009,29(3):1596-1606
通过对比研究青藏高原高寒草甸27种植物群落组分种在放牧和长期排除放牧生境中的生物量分配差异,试图揭示长期放牧干扰对植物生活史对策的影响.结果表明:(1)放牧对群落物种个体生物量大小和生物量分配有着显著的影响;(2)总体来看:多数物种(24)放牧生境中的平均个体生物量明显小于禁牧地中的平均个体生物量;而多数物种在放牧后(23种)繁殖分配明显增加;茎分配有增有减(15减小12种增加);叶分配呈减小趋势(20种减小7增加).(3)放牧的影响在不同物种间和功能群间都存在着明显的差异.放牧使毒草茎分配减小叶分配增加,繁殖分配几乎不受影响;豆科和杂草繁殖分配增加,茎分配和叶分配减小,其中豆科两个种的生物量分配变化都不显著;禾草叶分配减小,繁殖分配和茎分配增加; (4)在群落水平上,放牧使繁殖分配和叶分配增加,茎分配减少.  相似文献   

10.
The microscale variation and spatial genetic structure of the alpine plant species Primula minima L. was analysed using AFLPs. AFLP analysis based on three primer combinations and 123 fragments revealed no identical genotypes among the 86 studied samples from a 300 × 300 cm plot. Variation within the study plot was high: Nei's gene diversity was 0.22, Shannon's information index 0.33 and the percentage of polymorphic bands was 60.9. Cluster analysis revealed four main groups of genetically similar individuals and mapping these individuals resulted in a clear spatial pattern, with samples from the same group often located close together. The observed microscale structure was corroborated using a Mantel test, which revealed significant correlation of genetic and spatial distances, and by the results of a spatial autocorrelation analysis that indicated a high level of similarity between adjacent samples. An analysis of molecular variance revealed clear differentiation (18%) between the spatial groups. Overall gene flow within the plot was 1.11 and ranged from 0.33 between the spatially most distant groups to 2.33 between directly neighbouring groups. The extraordinary level of diversity detected in this study indicates an unexpectedly strong relevance of reproduction by seed for the species P. minima in alpine grasslands. The strong microscale variation suggests, however, that there is limited dispersal of seeds. Clonal reproduction is of subsidiary importance to sexual reproduction and seems to occur only over very small distances.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 549–556.  相似文献   

11.
Populations of Sinojackia rehderiana are highly threatened and have small and scattered distribution due to habitat fragmentation and human activities. Understanding changes in genetic diversity, the fine-scale spatial genetic structure (SGS) at different life stages and gene flow of S. rehderiana is critical for developing successful conservation strategies for fragmented populations of this endangered species. In this study, 208 adults, 114 juveniles and 136 seedlings in a 50 × 100-m transect within an old-growth forest were mapped and genotyped using eight microsatellite makers to investigate the genetic diversity and SGS of this species. No significant differences in genetic diversity among different life-history stages were found. However, a significant heterozygote deficiency in adults and seedlings may result from substantial biparental inbreeding. Significant fine-scale spatial structure was found in different life-history stages within 19 m, suggesting that seed dispersal mainly occurred near a mother tree. Both historical and contemporary estimates of gene flow (13.06 and 16.77 m) indicated short-distance gene dispersal in isolated populations of S. rehderiana. The consistent spatial structure revealed in different life stages is most likely the result of limited gene flow. Our results have important implications for conservation of extant populations of S. rehderiana. Measures for promoting pollen flow should be taken for in situ conservation. The presence of a SGS in fragmented populations implies that seeds for ex situ conservation should be collected from trees at least 19-m apart to reduce genetic similarity between neighbouring individuals.  相似文献   

12.
对青藏高原东缘玛曲高寒沼泽湿地分属于15科的47种主要植物进行光合测定, 结合对不同退化类型植物群落的样方调查, 分析了各种植物之间以及不同功能群之间的净光合速率、气孔导度、蒸腾速率和水分利用效率等光合参数的差异。结果表明: 1)玛曲高寒湿地的主要物种在净光合速率、气孔导度、蒸腾速率和水分利用效率4个光合特性参数上的差异显著, 表明各植物种以各自独特的方式适应高寒湿地环境; 在功能群水平上, 各功能群之间的差异亦显著。光合速率从大到小依次为禾草>莎草>豆科和其他双子叶类杂草, 水分利用效率则是莎草>禾草>豆科和其他双子叶类杂草; 2)湿地退化导致其群落组成发生明显改变, 其中最明显的特点是双子叶类杂草的比例大大增加; 而双子叶类杂草普遍较低的水分利用效率将会增大土壤水分通过光合作用的蒸腾散失, 在大气降水对水分补充变化不大的条件下, 这将会进一步加剧群落生境的干旱化, 不利于退化湿地的恢复和附近湿地的保护。研究结果表明, 在湿地保护和退化湿地恢复过程中, 典型湿地土著物种的保存和补充具有重要意义。  相似文献   

13.
Visualizing the pattern of variation using microsatellites within a Eucalyptus globulus forest on the island of Tasmania provided surprising insights into the complex nature of the fine-scale spatial genetic structure that resides in these forests. We used spatial autocorrelation and principal coordinate analysis to compare fine-scale genetic structure between juvenile and mature cohorts in a study area, 140 m in diameter, located within a typical, continuous E. globulus forest. In total, 115 juvenile and 168 mature individuals were genotyped with eight highly polymorphic microsatellite loci. There was no significant difference in the level of genetic diversity between cohorts. However, there were differences in the spatial distribution of the genetic variation. Autocorrelation analysis provided clear evidence for significant spatial genetic structure in the mature cohort and significant, but weaker, structure in the juvenile cohort. The spatial interpolation of principal coordinate axes, derived from ordination of the genetic distance matrix between individuals, revealed a spatially coherent family group which was evident in both cohorts. Direct comparison of the genetic structure within each cohort allowed visualization of a shift in the spatial distribution of genetic variation within the population of approximately 10 m. As the shift coincided with the direction of prevailing winds, it is hypothesized that this phenomenon is due to downwind dispersal of seeds and is indicative of the important role of prevailing winds in forcing eastward gene flow in these high-latitude forests.  相似文献   

14.
Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the im-portance of species composition, species richness, the type of different growth forms, and plant bio-mass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, her-baceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a de-crease from 13196.96±719.69 g/m2 in the sedge-dominated K. tibetica swamp to 2869.58±147.52 g/m2 in the forb and sedge dominated K. pygmaea meadow, and to 2153.08±141.95 g/m2 in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of below-ground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0-10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P<0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P<0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P<0.05); belowground biomass was positively correlated with soil moisture (P<0.05). However, in the K. pygnaeca and K. humilis meadow communities, aboveground biomass was posi-tively correlated to soil organic matter and soil total nitrogen (P<0.05). This suggests that the distribu-tion of biomass coincided with soil moisture and edaphic gradient in alpine meadows.  相似文献   

15.
藏北高寒草甸群落结构与物种组成对增温与施氮的响应   总被引:2,自引:0,他引:2  
宗宁  柴曦  石培礼  蒋婧  牛犇  张宪洲  何永涛 《生态学杂志》2016,27(12):3739-3748
气候变暖和氮沉降增加作为全球环境问题,将严重影响陆地生态系统的结构与功能.研究发现,近几十年来青藏高原增温显著,其中冬季升温最明显.而已有的研究更多关注全年增温,对冬季增温研究较少.本文基于高寒草甸地区增温和氮素添加影响研究的不足,在青藏高原高寒草甸区开展模拟增温和氮添加试验,研究长期增温与氮添加对高寒草甸群落结构与物种组成的影响.试验布设于2010年7月,地点在西藏当雄高寒草甸区,共有3种增温方式:对照、全年增温、冬季增温;每种增温处理下设置5个氮素添加梯度:0、10、20、40、80 kg N·hm-2·a-1,系统研究气候变暖与氮添加对高寒草甸生态系统群落结构与物种组成的影响.结果表明: 2012—2014年,增温与施氮处理均显著影响群落总盖度:全年增温处理降低了群落总盖度;在不施氮处理下,冬季增温降低了群落盖度,但在施氮处理下,随着氮剂量的提高群落盖度逐渐升高.增温与施氮对不同功能群植物的影响不同,增温处理降低了禾草与莎草植物盖度,而施氮提高了禾草植物盖度.相关分析表明,植被群落总盖度与生长旺盛期土壤含水量呈正相关关系,推测在降雨较少的季节增温导致的土壤含水量降低是群落盖度降低的主要原因.半干旱区高寒草甸土壤水分主要受降雨的调控,未来气候变化情景下,降雨时空格局的改变会显著影响植被群落盖度及组成,且大气氮沉降的增加对植被群落的影响也依赖于降雨条件的变化.  相似文献   

16.
张四虎  艾鷖  田黎明  泽让东科 《生态学报》2024,44(10):4288-4296
由于气候变化与人类活动的共同作用,青藏高原草地不断退化,草畜矛盾日趋严重,限制着高原畜牧业的可持续发展。夏季补饲可以加快牦牛生产速率、提高出栏率,减小草地放牧压力,是实现草地可持续发展的重要措施之一,但夏季补饲如何影响草地生态系统功能仍不明晰。以高寒草甸为研究对象,以牦牛为放牧实验家畜,设置夏季补饲放牧(FG)、传统重度放牧(TG)和禁牧(NG)3个放牧处理,每个处理设置3个重复。两年补饲试验后的结果表明:夏季补饲减缓传统放牧降低植物群落 α多样性的趋势;夏季补饲与传统放牧均降低了植物群落生物量;传统放牧表层土壤pH 和硝态氮均显著小于禁牧,但夏季补饲减弱了这些变化;夏季补饲显著降低了20-30 cm土层有机碳;夏季补饲增加了土壤表层磷含量。本研究表明夏季补饲放牧具有降低传统放牧压力的潜力,为保护和管理青藏高原高寒草甸生态系统提供重要的科学依据,并为改善牦牛的夏季饲养管理提供参考。  相似文献   

17.
Reintroductions and translocations are increasingly used to repatriate or increase probabilities of persistence for animal and plant species. Genetic and demographic characteristics of founding individuals and suitability of habitat at release sites are commonly believed to affect the success of these conservation programs. Genetic divergence among multiple source populations of American martens (Martes americana) and well documented introduction histories permitted analyses of post‐introduction dispersion from release sites and development of genetic clusters in the Upper Peninsula (UP) of Michigan <50 years following release. Location and size of spatial genetic clusters and measures of individual‐based autocorrelation were inferred using 11 microsatellite loci. We identified three genetic clusters in geographic proximity to original release locations. Estimated distances of effective gene flow based on spatial autocorrelation varied greatly among genetic clusters (30–90 km). Spatial contiguity of genetic clusters has been largely maintained with evidence for admixture primarily in localized regions, suggesting recent contact or locally retarded rates of gene flow. Data provide guidance for future studies of the effects of permeabilities of different land‐cover and land‐use features to dispersal and of other biotic and environmental factors that may contribute to the colonization process and development of spatial genetic associations.  相似文献   

18.
The spatial scale at which samples are collected and analysed influences the inferences that can be drawn from landscape genetic studies. We examined genetic structure and its landscape correlates in the pitcher plant midge, Metriocnemus knabi, an inhabitant of the purple pitcher plant, Sarracenia purpurea, across several spatial scales that are naturally delimited by the midge’s habitat (leaf, plant, cluster of plants, bog and system of bogs). We analysed 11 microsatellite loci in 710 M. knabi larvae from two systems of bogs in Algonquin Provincial Park (Canada) and tested the hypotheses that variables related to habitat structure are associated with genetic differentiation in this midge. Up to 54% of variation in individual‐based genetic distances at several scales was explained by broadscale landscape variables of bog size, pitcher plant density within bogs and connectivity of pitcher plant clusters. Our results indicate that oviposition behaviour of females at fine scales, as inferred from the spatial locations of full‐sib larvae, and spatially limited gene flow at broad scales represent the important processes underlying observed genetic patterns in M. knabi. Broadscale landscape features (bog size and plant density) appear to influence oviposition behaviour of midges, which in turn influences the patterns of genetic differentiation observed at both fine and broad scales. Thus, we inferred linkages among genetic patterns, landscape patterns and ecological processes across spatial scales in M. knabi. Our results reinforce the value of exploring such links simultaneously across multiple spatial scales and landscapes when investigating genetic diversity within a species.  相似文献   

19.
水杉孑遗居群AFLP遗传变异的空间分布   总被引:12,自引:0,他引:12  
本研究采用空间自相关分析方法对水杉 (Metasequoiaglyptostroboides)孑遗居群AFLP遗传变异的空间结构进行了研究 ,以探讨水杉孑遗居群遗传变异的分布特征及其形成机制。根据 6对AFLP选择性引物扩增的 46个多态性位点 ,选择了其表型频率在 2 5 %~ 75 %的 2 7个AFLP标记 ,运用等样本频率方法和等地理距离间隔方法分别对 3 9株和 3 7株原生母树进行了空间自相关系数Moran’sI值计算。结果表明 :水杉孑遗居群缺乏空间结构 ,绝大多数AFLP位点变异为随机分布的空间模式 ,但也有少数位点存在显著性随机相关 ,在 4~ 8km地理距离间隔显示负相关 ,说明该间隔可能是水杉孑遗居群的部分基因交流的有效屏障。水杉原生母树分布存在 12~ 2 8km的明显距离间隔空挡 ,说明人类从迁入该区域起就影响着水杉孑遗居群的原始生境 ,导致其生境片断化、景观破碎 ,进而形成岛屿状分布格局 ,并引起了水杉残留居群的随机遗传漂变。根据本研究结果 ,结合水杉孑遗居群较低的遗传多样性 ,分析探讨了水杉孑遗居群濒危的机理 ,并提出了相应的保育策略 ,为水杉的有效保育提供了科学依据  相似文献   

20.
Comparative analyses of spatial genetic structure (SGS) among species, populations, or cohorts give insight into the genetic consequences of seed dispersal in plants. We analysed SGS of a weedy tree in populations with known and unknown recruitment histories to first establish patterns in populations with single vs. multiple founders, and then to infer possible recruitment scenarios in populations with unknown histories. We analysed SGS in six populations of the colonizing tree Albizia julibrissin Durazz. (Fabaceae) in Athens, Georgia. Study sites included two large populations with multiple, known founders, two small populations with a single, known founder, and two large populations with unknown recruitment histories. Eleven allozyme loci were used to genotype 1385 individuals. Insights about the effects of colonization history from the SGS analyses were obtained from correlograms and Sp statistics. Distinct differences in patterns of SGS were identified between populations with multiple founders vs. a single founder. We observed significant, positive SGS, which decayed with increasing distance in the populations with multiple colonists, but little to no SGS in populations founded by one colonist. Because relatedness among individuals is estimated relative to a local reference population, which usually consists of those individuals sampled in the study population, SGS in populations with high background relatedness, such as those with a single founder, may be obscured. We performed additional analyses using a regional reference population and, in populations with a single founder, detected significant, positive SGS at all distances, indicating that these populations consist of highly related descendants and receive little seed immigration. Subsequent analyses of SGS in size cohorts in the four large study populations showed significant SGS in both juveniles and adults, probably because of a relative lack of intraspecific demographic thinning. SGS in populations of this colonizing tree is pronounced and persistent and is determined by the number and relatedness of founding individuals and adjacent seed sources. Patterns of SGS in populations with known histories may be used to indirectly infer possible colonization scenarios for populations where it is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号