首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In gas-liquid dispersions based on viscous non-Newtonian fluids, numerous very small bubbles are formed due to their high residence times in contacting devices such as bubble columns. The influence of these small bubbles on the measurement of the volumetric mass transfer coefficient in the contactor by the dynamic CO(2) gas analysis method is discussed. It is found that their effect on this measuring technique is insignificant compared to that when using the conventional dissolved-oxygen technique.  相似文献   

3.
The influence of short draft tubes covered by perforated plates on gas-liquid mass transfer was examined in external-loop airlift bioreactors. The volumetric mass transfer coefficients in a model external-loop airlift bioreactor were measured with water and non-Newtonian media. It was found that introduction of draft tubes covered with perforated plates in the riser significantly improved the mass transfer rate, particularly in higher viscous non-Newtonian fermentation media. The enhancement of mass transfer rate might be due mainly to an increase in bubble coalescence and redispersion. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
Mass transfer in blood oxygenators using blood analogue fluids   总被引:1,自引:0,他引:1  
Mass transfer correlations for hollow fiber blood oxygenators have been determined experimentally using Newtonian and non-Newtonian blood analogue fluids. The Newtonian fluids consisted of deionized water and glycerol/water mixtures. The non-Newtonian fluids were prepared by adding small amounts of xanthan gum to the Newtonian blood analogue fluids. The rheological behavior of the non-Newtonian blood analogue fluids was modeled using the power law. The diffusion of oxygen into and out of the Newtonian and non-Newtonian blood analogue fluids has been studied. The liquid stream flowed outside and across bundles of woven hollow fibers, while the gas stream flowed inside the fibers.  相似文献   

5.
The local overall volumetric gas-liquid mass transfer coefficients at the specified point in a gas-liquid-solid three-phase reversed flow jet loop bioreactor (JLB) with a non-Newtonian fluid was experimentally investigated by a transient gassing-in method. The effects of liquid jet flow rate, gas jet flow rate, particle density, particle diameter, solids loading, nozzle diameter and CMC concentration on the local overall volumetric gas-liquid mass transfer coefficient (K(L)a) profiles were discussed. It was observed that local overall K(L)a profiles in the three-phase reversed flow JLB with non-Newtonian fluid increased with the increase of gas jet flow rate, liquid jet flow rate, particle density and particle diameter, but decreased with the increase of the nozzle diameter and CMC concentration. The presence of solids at a low concentration increased the local overall K(L)a profiles, and the optimum of solids loading for a maximum profile of the local overall K(L)a was found to be 0.18x10(-3)m(3) corresponding to a solids volume fraction, varepsilon(S)=2.8%.  相似文献   

6.
Oxygen transfer to mycelial fermentation broths in an airlift fermentor   总被引:2,自引:0,他引:2  
Oxygen transfer rates and gas holdups were measured in mycelial fermentation broths of Chaetomium cellulolyticum and Neurospora sitophila, each cultured in a 1300-L pilot-plant-scale airlift fermentor. These cultures exhibited highly non-Newtonian flow behavior coupled with a substantial decrease in oxygen transfer rates. The volumetric mass transfer coefficients in these cultures were found to be 65-70% lower than those in water. The data were compared with the available correlations obtained for simulated fermentation broths. In general, the data for C. cellulolyticum are in satisfactory agreement with the correlations for the model media but the data for N. sitophila are higher than that predicted by the correlations. Model media based correlations are found to be applicable to the fermentation processes if the culture medium does not possess a high yield stress.  相似文献   

7.
We use the dissipative particle dynamics (DPD) method to simulate the non-Newtonian electroosmotic flow (EOF) through nanochannels. Contrary to a large amount of past computational efforts dedicated to the study of EOF profile, this work pays attention to the EOF of non-Newtonian fluids, which has been rarely touched in past publications. Practically, there are many MEMS/NEMS devices, in which the EOF behaviour should be treated assuming both non-continuum and non-Newtonian conditions. Therefore, our concern in this work is to simulate the EOF through nanochannels considering both non-Newtonian fluid properties and non-continuum flow conditions. We have chosen DPD as our working tool because it provides several important advantages comparing with the classical time consuming molecular dynamics method. Using the DPD method, we explore the effect of a few important fluid properties and nanochannel parameters on the EOF behaviour and the resulting flow rate magnitudes. Our investigation will result in a number of findings, which have not been reported in past research works.  相似文献   

8.
Choi HW  Barakat AI 《Biorheology》2005,42(6):493-509
Endothelial cell (EC) responsiveness to shear stress is essential for vasoregulation and plays a role in atherogenesis. Although blood is a non-Newtonian fluid, EC flow studies in vitro are typically performed using Newtonian fluids. The goal of the present study was to determine the impact of non-Newtonian behavior on the flow field within a model flow chamber capable of producing flow disturbance and whose dimensions permit Reynolds and Womersley numbers comparable to those present in vivo. We performed two-dimensional computational fluid dynamic simulations of steady and pulsatile laminar flow of Newtonian and non-Newtonian fluids over a backward facing step. In the non-Newtonian simulations, the fluid was modeled as a shear-thinning Carreau fluid. Steady flow results demonstrate that for Re in the range 50-400, the flow recirculation zone downstream of the step is 22-63% larger for the Newtonian fluid than for the non-Newtonian fluid, while spatial gradients of shear stress are larger for the non-Newtonian fluid. In pulsatile flow, the temporal gradients of shear stress within the flow recirculation zone are significantly larger for the Newtonian fluid than for the non-Newtonian fluid. These findings raise the possibility that in regions of flow disturbance, EC mechanotransduction pathways stimulated by Newtonian and non-Newtonian fluids may be different.  相似文献   

9.
A modified method for determination of diffusivities of low molecular substances in non-Newtonian liquids described by the power-law model has been proposed. It is based on the dissolution of Geiss body, with a parameter m=1/3 rotating in an infinite fluid. In this case, the solution of the differential equations of motion and mass transfer is available as an analytical formula for calculating the diffusivity coefficient.The method allows the extension of the variety of media and diffusing species. It has been illustrated with dissolving of gypsum in water and five non-Newtonian liquids. The results obtained have been interpreted taking into account the interaction between calcium ions and polymer molecules of the non-Newtonian system, as well as the heterogeneity of the system near to the dissolving surface.  相似文献   

10.
The market for microbial biopolymers is currently expanding to include several emerging biomedical applications. Specifically, these applications are drug delivery and wound healing. A fundamental understanding of the key fermentation parameters is necessary in order to optimize the production of these biopolymers. Considering that most microbial biopolymer systems exhibit non-Newtonian rheology, oxygen mass transfer can be an important parameter to optimize and control. In this article, we present a critical review of recent advances in rheological and mass transfer characteristics of selected biopolymers of commercial interest in biomedical applications.  相似文献   

11.
For mammalian cell culture, getting a continuous supply of oxygen and extracting carbon dioxide are primary challenges even in the most modern biopharmaceutical manufacturing plants, due to the low oxygen solubility and excessive carbon dioxide accumulation. In addition, various independent flow and mass transfer characteristics in the culture tanks vessel make scale-up extremely difficult. One method for overcoming these and providing rational optimization is solving the fluid and mass transport equations by numerical simulation. To develop a simulation program, it is decisively important to know mass transfer coefficients of gaseous species in the culture tank. In this study, oxygen mass transfer coefficients are measured using a beaker with a sparger and impellers. In order to investigate the formulation of the mass transfer coefficients, the turbulent flow statistics is calculated by a CFD code for all cases, and the expressions of the mass transfer coefficients are established as functions of the statistics. Until now, the expression by Kawase is known in this field. This expression becomes a function only of energy dissipation rate epsilon. It does not coincide with the conventional experimental fact that mass transfer coefficient is proportional power 0.5 of impeller rotation speed. The new mass transfer coefficient is dependent on both of energy dissipation rate epsilon and turbulent flow energy k. It satisfies the relation of power of 0.5 of impeller rotation speed.  相似文献   

12.
A comprehensive study of anaerobic digestion requires an advanced turbulence model technique to accurately predict mixing flow patterns because the digestion process that involves mass transfer between anaerobes and their substrates is primarily dependent on detailed information about the fine structure of turbulence in the digesters. This study presents a large eddy simulation (LES) of mechanical agitation of non-Newtonian fluids in anaerobic digesters, in which the sliding mesh method is used to characterize the impeller rotation. The three subgrid scale (SGS) models investigated are: (i) Smagorinsky-Lilly model, (ii) wall-adapting local eddy-viscosity model, and (iii) kinetic energy transport (KET) model. The simulation results show that the three SGS models produce very similar flow fields. A comparison of the simulated and measured axial velocities indicates that the LES profile shapes are in general agreement with the experimental data but they differ markedly in velocity magnitudes. A check of impeller power and flow numbers demonstrates that all the SGS models give excellent predictions, with the KET model performing the best. Moreover, the performance of six Reynolds-averaged Navier-Stokes turbulence models are assessed and compared with the LES results.  相似文献   

13.
ABSTRACT:?

The market for microbial biopolymers is currently expanding to include several emerging biomedical applications. Specifically, these applications are drug delivery and wound healing. A fundamental understanding of the key fermentation parameters is necessary in order to optimize the production of these biopolymers. Considering that most microbial biopolymer systems exhibit non-Newtonian rheology, oxygen mass transfer can be an important parameter to optimize and control. In this article, we present a critical review of recent advances in rheological and mass transfer characteristics of selected biopolymers of commercial interest in biomedical applications.  相似文献   

14.
Relatively inefficient heat/mass transfer is characteristic of tubular devices if the Reynolds number is low. One method of improving the heat/mass transfer efficiency of such devices is by inducing transverse laminar secondary circulations that are superimposed on the primary flow field; the resulting transverse velocity components lead to fluid mixing and hence augmented mass transfer in the tube lumen. The present work is a theoretical and experimental investigation of the enhanced transport in rotating, nonaligned, straight tubes, a method of transport enhancement that utilizes Coriolis acceleration to create transverse fluid mixing. This technique couples the transport advantages of coiled tubes with the design advantages of straight tubes. The overall mass balance equation is numerically solved for transfer into fluids flowing steadily through rotating nonaligned straight tubes. This solution, for small Coriolis disturbances, incorporates a third order perturbation solution for the primary and secondary flow fields. For sufficiently small Coriolis disturbances the bulk concentration increase is found to be uniquely determined by the value of a single similarity parameter. As the Coriolis disturbance is increased, however, two additional parameters are required to accurately characterize the mass transfer. In general, increasing the Coriolis accelerations results in an increase in mass transfer. There are solution regimens, however, in which increasing this acceleration can lead to a decrease in mass transfer efficiency. This interesting phenomena, which has important design implications, appears to result from velocity-weighting effects on the exiting sample. Experiments, involving the measurement of oxygen transferred into water and blood, produced data that agree with the theoretical predictions.  相似文献   

15.
Summary Mean relative gas holdup, slip velocity, bubble size distribution, mean specific interfacial area, and volumetric mass transfer coefficient of oxygen were estimated in sparged columns 14 cm in diameter and 380 and/or 390 cm high with two different aerator types (porous plate and injector nozzle) in highly viscous Newtonian (glycerol solutions) and non-Newtonian (CMC solutions) fluids.For the Newtonian liquids the above properties were estimated as function of the viscosity of the liquid. For the non-Newtonian liquids they were determined as function of the fluid consistency index and flow behavior index. Significant differences between Newtonian and non-Newtonian systems appear. In Newtonian medium kL a drops with increasing viscosity and already approaches a constant value at =40 cP. In pseudoplastic medium kL a varies with the fluid consistency and flow behavior indexes in the entire investigated range.In both of these systems the primary bubble population changes into two or three populations along the reactor: the medium bubbles gradually disappear and small and large bubbles are formed.  相似文献   

16.
In the present study, theoretical formulations for calculation of optimal bifurcation angle and relationship between the diameters of mother and daughter vessels using the power law model for non-Newtonian fluids are developed. The method is based on the distribution of wall shear stress in the mother and daughter vessels. Also, the effect of distribution of wall shear stress on the minimization of energy loss and flow resistance is considered. It is shown that constant wall shear stress in the mother and daughter vessels provides the minimum flow resistance and energy loss of biological flows. Moreover, the effects of different wall shear stresses in the mother and daughter branches, different lengths of daughter branches in the asymmetric bifurcations and non-Newtonian effect of biological fluid flows on the bifurcation angle and the relationship between the diameters of mother and daughter branches are considered. Using numerical simulations for non-Newtonian models such as power law and Carreau models, the effects of optimal bifurcation angle on the pressure drop and flow resistance of blood flow in the symmetric bifurcation are investigated. Numerical simulations show that optimal bifurcation angle decreases the pressure drop and flow resistance especially for bifurcations at large Reynolds number.  相似文献   

17.
We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a rate proportional to the local pressure. Power law fluid pressure and displacement of a solid in the tissue are computed as function of radial distance and time. Numerical solutions indicate that shear thickening fluids exhibit less fluid pressure and induce small solid deformation as compared to shear thinning fluids. Absorption in the biological tissue increases as a consequence of flow-induced deformation for power law fluids. In most cases non-Newtonian results are compared with the viscous fluid case to magnify the differences.  相似文献   

18.
Liquid-to-gas mass transfer in anaerobic processes was investigated theoretically and experimentally. By using the classical definition of k(L)a, the global volumetric mass transfer coefficient, theoretical development of mass balances in such processes demonstrates that the mass transfer of highly soluble gases is not limited in the usual conditions occurring in anaerobic fermentors (low-intensity mixing). Conversely, the limitation is important for poorly soluble gases, such as methane and hydrogen. The latter could be overconcentrated to as much as 80 times the value at thermodynamic equilibrium. Such overconcentrations bring into question the biological interpretations that have been deduced solely from gaseous measurements. Experimental results obtained in three different methanogenic reactors for a wide range of conditions of mixing and gas production confirmed the general existence of low mass transfer coefficients and consequently of large overconcentrations of dissolved methane and hydrogen (up to 12 and 70 times the equilibrium values, respectively). Hydrogen mass transfer coefficients were obtained from the direct measurements of dissolved and gaseous concentrations, while carbon dioxide coefficients were calculated from gas phase composition and calculation of related dissolved concentration. Methane transfer coefficients were based on calculations from the carbon dioxide coefficients. From mass balances performed on a gas bubble during its simulated growth and ascent to the surface of the liquid, the methane and carbon dioxide contents in the gas bubble appeared to be controlled by the bubble growth process, while the bubble ascent was largely responsible for a slight enrichment in hydrogen.  相似文献   

19.
The gas environment is of major importance in controlling aerobic fermentation processes for the manufacture of microbial products. Oxygen and carbon dioxide levels in gas-liquid equilibria affect productivity and energy consumption in such processes and appear to be implicated in the regulation of microbial metabolism. Gas-liquid transfer has been intensively studied by many investigators for Newtonian and non-Newtonian fluids, primarily in terms of oxygen-limitation in biomass and product formation. More recentreports show that microbial growth and product formation are affected by levels of oxygen and carbon dioxide in the gas environment, suggesting that microbial metabolism may be directed towards specific products by the control of such environments. High product concentrations may also be obtained by solid substrate fermentations with mycelial organisms cultured on semi-solid agricultural products at low moisture contents. Such methods are commonly used in the Orient for the manufacture of enzymes and traditional fermented foods and could probably be extended to other microbial products. This review covers fundamental aspects of engineering research in microbial processes that suggest applications for controlled gas environments in submerged culture and solid substrate fermentations of potential industrial interest.  相似文献   

20.
Prediction of biological acid neutralization in acid-sensitive lakes   总被引:8,自引:6,他引:2  
Sulfate and nitrate removal, and the resulting sulfuric and nitric acid neutralization within acid-sensitive lakes, were predicted from a simple model requiring knowledge only of water residence time, mean depth, and average mass transfer coefficients for nitrate and sulfate removal. The model applies to lakes with oxic hypolimnia which are typical of acid-sensitive lakes. Average mass transfer coefficients for sulfate and nitrate were obtained by two independent methods which agreed well with each other. A model such as this is necessary for predicting the rates at which different lakes acidify and recover from acidification, and explains why lakes with short water residence times are especially susceptible to acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号