首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Du  Y Zhu  A Shanmugam    A L Kenter 《Nucleic acids research》1997,25(15):3066-3073
The molecular mechanism of immunoglobulin switch recombination is poorly understood. Switch recombination occurs between pairs of switch regions located upstream of the constant heavy chain genes. Previously we showed that switch recombination breakpoints cluster to a defined subregion in the Sgamma3, Sgamma1 and Sgamma2b tandem repeats. We have developed a strategy for direct amplification of Smu/Sgamma3 composite fragments as well as Smu and Sgamma3 regions by PCR. This assay has been used to analyze the organization of Smu, Sgamma3 and a series of Smu/Sgamma3 recombination breakpoints from hybridomas and normal mitogen-activated splenic B cells. DNA sequence analysis of the switch fragments showed direct joining of Smu and Sgamma3 without deletions or duplications. Mutations were found in two switch junctions on both sides of the crossover point, suggesting that template switching is the most likely model for the mechanism of switch recombination. Statistical analysis of the positions of the recombination breakpoints in the Sgamma3 tandem repeat indicates the presence of two sub-clusters, suggesting non-random usage of DNA substrate in the recombination reaction.  相似文献   

2.
3.
Class switch DNA recombination (CSR) and somatic hypermutation (SHM) are central to the maturation of the Ab response. Both processes involve DNA mismatch repair (MMR). MMR proteins are recruited to dU:dG mispairs generated by activation-induced cytidine deaminase-mediated deamination of dC residues, thereby promoting S-S region synapses and introduction of mismatches (mutations). The MutL homolog Mlh3 is the last complement of the mammalian set of MMR proteins. It is highly conserved in evolution and is essential to meiosis and microsatellite stability. We used the recently generated knockout mlh3(-/-) mice to address the role of Mlh3 in CSR and SHM. We found that Mlh3 deficiency alters both CSR and SHM. mlh3(-/-) B cells switched in vitro to IgG and IgA but displayed preferential targeting of the RGYW/WRCY (R = A or G, Y = C or T, W = A or T) motif by Sgamma1 and Sgamma3 breakpoints and introduced more insertions and fewer donor/acceptor microhomologies in Smu-Sgamma1 and Smu-Sgamma3 DNA junctions, as compared with mlh3(+/+) B cells. mlh3(-/-) mice showed only a slight decrease in the frequency of mutations in the intronic DNA downstream of the rearranged J(H)4 gene. However, the residual mutations were altered in spectrum. They comprised a decreased proportion of mutations at dA/dT and showed preferential RGYW/WRCY targeting by mutations at dC/dG. Thus, the MMR Mlh3 protein plays a role in both CSR and SHM.  相似文献   

4.
5.
Deoxyribonucleic acid double-stranded breaks act as intermediates in Ig V(D)J recombination and probably perform a similar function in class switch recombination between IgH C genes. In SCID mice, V(D)J recombination is blocked because the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) protein is defective. We show in this study that switching to all isotypes examined was detectable when the SCID mutation was introduced into anti-hen egg lysozyme transgenic B cells capable of undergoing class switch recombination, but switching was significantly reduced in comparison with control B cells of the same specificity lacking the RAG1 gene. Thus, DNA-PKcs is involved in switching to all isotypes, but plays a lesser role in the switching process than it does in V(D)J-coding joint formation. The higher level of switching observed by us in SCID B cells compared with that observed by others in DNA-PKcs(null) cells raises the possibility that kinase-deficient DNA-PKcs can function in switching. Point mutation of G:C base pairs with cytidines on the sense strand was greatly reduced in recombined switch regions from SCID cells compared with control RAG1(-/-) B cells. The preferential loss of sense strand cytidine mutations from hybrid S regions in SCID cells suggests the possibility that nicks might form in S regions of activated B cells on the template strand independently of activation-induced cytidine deaminase and are converted to double-strand breaks when activation-induced cytidine deaminase deaminates the non-template strand.  相似文献   

6.
7.
We have used cloned mouse and human DNA probes to identify regions of conserved homology between the human and murine DNA segments, (termed kappa deleting element (kde) and recombining segment (RS) respectively) which are frequently recombined in lambda-producing B cells. Heteroduplex analysis indicated extensive homology in the region immediately downstream of the recombination site of both segments. This was confirmed by Southern and direct nucleotide sequence analyses. Fifty percent homology was detected within the 500 nucleotides that neighbour the recombination points in the kde and RS segments. These results indicate that the kde and RS sequences are evolutionarily conserved and may be functionally relevant to normal B cell development.  相似文献   

8.
9.
We have examined the switch region content of 25 hybridomas that secret antibodies of various isotypes with specificity for phosphocholine or glycoproteins of herpes simplex virus. These Southern hybridization experiments included probes for the murine JH region as well as probes for the mu, gamma 3, gamma 1, gamma 2b, gamma 2a, and alpha switch regions. For 22 of the hybridomas, the deletion model of the heavy chain switch fits the data well--all switch regions upstream of the rearranged (and expressed) switch regions are deleted and all switch regions downstream remain in the germline configuration. As exceptions to a simple deletion model of the switch recombination, we have observed two, and perhaps three, examples of switch region rearrangements downstream of an expressed heavy chain gene. The 25 hybridoma DNA samples include 28 rearranged gamma switch regions; the sizes of at least 25 of these rearranged fragments are consistent with recombination in the tandemly repeated sequences associated with gamma genes. For those hybridomas with two spleen cell-derived Igh loci, including three mu-expressers, three gamma 3-expressers, four gamma 1-expressers, and one gamma 2b-expresser, the two loci tend to be rearranged to the same switch region, suggesting that the heavy chain switch rearrangement is an isotype-specific event. The exceptions within this group include three hybridomas in which the switch seems to be incomplete--on one chromosome the JH complex is rearranged to the S gamma 3 region, while on the other it remains associated with the S mu region. A second group of hybridomas, which includes four gamma 3-expressers, have both gamma 3 and gamma 1 switch rearrangements. Each of these four hybridomas includes three rearranged JH segments, suggesting that they may be the result of an unusual differentiative pathway or a technical artifact. These experiments suggest that the heavy chain switch rearrangement in normal spleen cells is a deletion event that occurs within tandemly repeated elements. The rearrangement is mediated by factors with partial, or perhaps complete, isotype specificity.  相似文献   

10.
11.
The immunoglobulin heavy chain isotype switch is mediated by a DNA rearrangement involving specific genomic segments referred to as switch regions. Switch regions are composed of tandemly repeated simple sequences. The role of the tandemly repeated structure of switch regions in the switch recombination process is not understood. We mapped eight recombination sites--six in the gamma 1 and two in the gamma 3 tandem arrays. In addition, we obtained molecular clones representing three of the six gamma 1 rearrangements, and determined the nucleotide sequences of the recombination sites in each. In general, the rearrangements are confined to the tandem repeat units, and are not clustered in a particular portion of either the gamma 3 or gamma 1 switch region. Nucleotide sequence analysis of one of the recombinant clones, gamma M35, reveals evidence for a successive switch event wherein a recombination between S mu and S gamma 3 was followed by recombination 57 bp downstream with S gamma 1. gamma 1 sequence data from the molecular clones we obtained, together with similar data from other investigators regarding the gamma 1, gamma 2b, and gamma 2a switch regions, reveals that recombinations tend to occur at homologous positions of the respective gamma-unit repeats, adjacent to the elements AGCT and GGGG found in each. This finding suggests that the cutting and religation step of the recombination process is mediated by a recombinase common to the four gamma-isotypes.  相似文献   

12.
Mutations in the Saccharomyces cerevisiae alpha-factor receptor that lead to improved response to Saccharomyces kluyveri alpha-factor were identified and sequenced. Mutants were isolated from cells bearing randomly mutagenized receptor gene (STE2) plasmids by an in vivo screen. Five mutations lead to substitutions in hydrophobic segments in the core of the receptor (M54I, S145L, S145L-S219L, A229V, L255S-S288P). Remarkably, strains expressing these mutant receptors exhibited positive pheromone responses to desTrp1,Ala3-alpha-factor, an analog that normally blocks these responses. The M54I mutation appeared to affect only ligand specificity. The other mutations conferred additional effects on signaling or recovery. Two mutants were more sensitive to alpha-factor than wild type (S145L, A229V). One mutant was more sensitive to alpha-factor-induced cell cycle arrest initially, but then recovered more efficiently (S145L-S219L). One mutant (L255S-S288P) conferred positive pheromone responses to alpha-factor as assayed by FUS1-lacZ reporter induction, but did not display growth arrest. The hydrophobic receptor core thus appears to control activation by some ligands and to play roles in aspects of signal transduction and recovery.  相似文献   

13.
The heavy-chain switch from immunoglobulin M (IgM) expression to IgA expression is mediated by a recombination event between segments of DNA called switch regions. The switch regions lie two to six kilobases upstream of the mu and alpha constant region coding segments. Switch recombination to IgA expression results in a recombinant mu-alpha switch region upstream of the expressed alpha constant region gene. We have characterized the products of switch recombination by a lymphoma cell line, I.29. Two sets of molecular clones represent the expected products of simple mu to alpha switches. Five members of a third set of molecular clones share the same recombination site in both the mu and the alpha switch regions, implying that the five molecular clones were derived from a single switch recombination event. Surprisingly, the five clones fall into two sets of sequences, which differ from each other by several point mutations and small deletions. Duplication of switch region sequences are also found in these five molecular clones. An explanation for these data is that switch recombination involves DNA synthesis, which results in nucleotide substitutions, small deletions, and duplications.  相似文献   

14.
Products and implied mechanism of H chain switch recombination   总被引:10,自引:0,他引:10  
The Ig H chain switch is a DNA recombination event. The recombination occurs between two or more switch regions, areas of tandem sequence duplication that lie upstream of the corresponding H chain C region genes. We have determined the DNA sequence at four recombination sites in three molecularly cloned, rearranged switch regions. All eight donor and recipient recombination sites are at the common pentamers GGGGT, GAGCT, and GGTGG. One of the switch recombination events is an inversion of S gamma 3 sequences. Another of the recombinational events is an internal S gamma 1 deletion, which may be switch enzyme mediated. These results, together with other switch recombination site sequences, suggest that switch recombination is mediated by cutting enzymes with modest specificity and religation enzymes with no specificity.  相似文献   

15.
The Int proteins of bacteriophages HK022 and lambda promote recombination between phage and bacterial attachment sites. Although the proteins and attachment sites of the two phages are similar, neither protein promotes efficient recombination between the pair of attachment sites used by the other phage. To analyze this difference in specificity, we constructed and characterized chimeric attachment sites in which segments of one site were replaced with corresponding segments of the other. Most such chimeras recombined with appropriate partner sites in vivo and in vitro, and their differential responses to the Int proteins of the two phages allowed us to locate determinants of the specificity difference in the bacterial attachment sites and a central segment of the phage attachment sites. The location of these determinants encompasses three of the four core-type binding sites for lambda Int: C, B, and most importantly, B'. The regions corresponding to the C' core binding site and the arm-type binding sites of lambda Int play no role in the specificity difference and, indeed, are well conserved in the two phages. We found, unexpectedly, that the effect of replacement of an Int-binding region on the recombinational potency of one chimeric site was reversed by a change of partner. This novel context effect suggests that postsynaptic interactions affect the specificity of recognition of attachment sites by Int.  相似文献   

16.
Mature B cells replace the mu constant region of the H chain with a downstream isotype in a process of class switch recombination (CSR). Studies suggest that CSR induction is limited to activated mature B cells in the periphery. Recently, we have shown that CSR spontaneously occur in B lymphopoiesis. However, the mechanism and regulation of it have not been defined. In this study, we show that spontaneous CSR occurs at all stages of B cell development and generates aberrant joining of the switch junctions as revealed by: 1) increased load of somatic mutations around the CSR break points, 2) reduced sequence overlaps at the junctions, and 3) excessive switch region deletion. In addition, we found that incidence of spontaneous CSR is increased in cells carrying VDJ rearrangements. Our results reveal major differences between spontaneous CSR in developing B cells and CSR induced in mature B cells upon activation. These differences can be explained by deregulated expression or function of activation-induced cytidine deaminase early in B cell development.  相似文献   

17.
Early in its differentiative pathway, a given B lymphocyte expresses immunoglobulin of the mu heavy chain class (IgM). Subsequent differentiative processes may involve rearrangement within the immunoglobulin heavy chain chromosomal locus to enable cells of the same lineage to synthesize immunoglobulins of other heavy chain classes (e. g. IgG, IgE or IgA), but with specificity for the same antigen as the original IgM molecule. Switch recombination, the molecular event which facilitates this chromosomal rearrangement, has been shown to occur between segments of DNA consisting of tandemly repeated unit sequences. These DNA segments have been functionally defined as switch regions. We have cloned the gamma 1 switch region from the BALB/c germline, and have demonstrated that significantly divergent sequence elements are interspersed among the tandemly repeated units characteristic of this switch region. We show that these unique elements exist in at least three copies within the switch segment, and discuss the implications of this novel and previously unreported primary structure.  相似文献   

18.
Activation-induced cytidine deaminase (AID) is essential for class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The C terminus of AID is required for CSR but not for SHM, but the reason for this is not entirely clear. By retroviral transduction of mutant AID proteins into aid -/- mouse splenic B cells, we show that 4 amino acids within the C terminus of mouse AID, when individually mutated to specific amino acids (R190K, A192K, L196S, F198S), reduce CSR about as much or more than deletion of the entire C terminal 10 amino acids. Similar to ΔAID, the substitutions reduce binding of UNG to Ig Sμ regions and some reduce binding of Msh2, both of which are important for introducing S region DNA breaks. Junctions between the IgH donor switch (S)μ and acceptor Sα regions from cells expressing ΔAID or the L196S mutant show increased microhomology compared to junctions in cells expressing wild-type AID, consistent with problems during CSR and the use of alternative end-joining, rather than non-homologous end-joining (NHEJ). Unlike deletion of the AID C terminus, 3 of the substitution mutants reduce DNA double-strand breaks (DSBs) detected within the Sμ region in splenic B cells undergoing CSR. Cells expressing these 3 substitution mutants also have greatly reduced mutations within unrearranged Sμ regions, and they decrease with time after activation. These results might be explained by increased error-free repair, but as the C terminus has been shown to be important for recruitment of NHEJ proteins, this appears unlikely. We hypothesize that Sμ DNA breaks in cells expressing these C terminus substitution mutants are poorly repaired, resulting in destruction of Sμ segments that are deaminated by these mutants. This could explain why these mutants cannot undergo CSR.  相似文献   

19.
To generate highly specific and adapted immune responses, B cells diversify their antibody repertoire through mechanisms involving the generation of programmed DNA damage. Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by the recruitment of activation-induced cytidine deaminase (AID) to immunoglobulin loci and by the subsequent generation of DNA lesions, which are differentially processed to mutations during SHM or to double-stranded DNA break intermediates during CSR. The latter activate the DNA damage response and mobilize multiple DNA repair factors, including Parp1 and Parp2, to promote DNA repair and long-range recombination. We examined the contribution of Parp3 in CSR and SHM. We find that deficiency in Parp3 results in enhanced CSR, while SHM remains unaffected. Mechanistically, this is due to increased occupancy of AID at the donor (Sμ) switch region. We also find evidence of increased levels of DNA damage at switch region junctions and a bias towards alternative end joining in the absence of Parp3. We propose that Parp3 plays a CSR-specific role by controlling AID levels at switch regions during CSR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号