共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Intracellular vesicular stomatitis virus leader RNAs are found in nucleocapsid structures. 总被引:3,自引:10,他引:3 下载免费PDF全文
Previous studies demonstrated that cytoplasmic extracts of cells infected with vesicular stomatitis virus contain plus-strand leader RNAs which sediment at 18S on sucrose gradients as a complex with viral N protein. The work presented in this paper demonstrated that these 18S complexes were stable on CsCl density gradients, banding at a buoyant density near that of genome nucleocapsids, and exhibited a morphology in an electron microscope similar to the disk structures found in virus genome nucleocapsids. Minus-strand leader RNAs were also found in 18S complexes on sucrose gradients. Quantitation of intracellular leader RNA suggested that, late in infection, approximately three-quarters of total intracellular leader RNA was encapsidated. 相似文献
3.
Pseudotypes of vesicular stomatitis virus with the mixed coat of reticuloendotheliosis virus and vesicular stomatitis virus. 下载免费PDF全文
Vesicular stomatitis virus (VSV) forms pseudotypes with envelope components of reticuloendotheliosis virus (REV). The VSV pseudotype possesses the limited host range and antigenic properties of REV. Approximately 70% of the VSV, Indiana serotype, and 45% of VSV, New Jersey serotype, produced from the REV strain T-transformed chicken bone marrow cells contain mixed envelope components of both VSV and REV. VSV pseudotypes with mixed envelope antigens can be neutralized with excess amounts of either anti-VSV antiserum or anti-REV antiserum. 相似文献
4.
Association of vesicular stomatitis virus proteins with HeLa cell membranes and released virus. 总被引:7,自引:10,他引:7 下载免费PDF全文
The association of vesicular stomatitis virus proteins with intracellular and plasma membranes was examined by pulse and pulse-chase labeling of virus-infected HeLa cells with [35S]methionine and separation of cell homogenates into three major membrane fractions in discontinuous sucrose gradients. The glycoprotein G was primarily associated with rough endoplasmic reticulum-like membranes after short radioactive pulses (2 to 4 min) but accumulated in the plasma membrane-enriched fraction and the smooth internal membrane fraction with longer pulse or chase periods. The nucleocapsid protein N and the matrix protein M accumulated in the rough endoplasmic reticulum and plasma membrane-like fractions but not in the smooth internal membrane fraction. Only a fraction (35 to 40%) of the viral protein synthesized during a short pulse in the mid-cycle of infection was apparently utilized in released virus. The newly synthesized virus proteins first appeared in released virus in the order: M, N and L, and G. 相似文献
5.
Replication-competent recombinant vesicular stomatitis virus encoding hepatitis C virus envelope proteins 下载免费PDF全文
Tani H Komoda Y Matsuo E Suzuki K Hamamoto I Yamashita T Moriishi K Fujiyama K Kanto T Hayashi N Owsianka A Patel AH Whitt MA Matsuura Y 《Journal of virology》2007,81(16):8601-8612
Although in vitro replication of the hepatitis C virus (HCV) JFH1 clone of genotype 2a (HCVcc) has been developed, a robust cell culture system for the 1a and 1b genotypes, which are the most prevalent viruses in the world and resistant to interferon therapy, has not yet been established. As a surrogate virus system, pseudotype viruses transiently bearing HCV envelope proteins based on the vesicular stomatitis virus (VSV) and retrovirus have been developed. Here, we have developed a replication-competent recombinant VSV with a genome encoding unmodified HCV E1 and E2 proteins in place of the VSV envelope protein (HCVrv) in human cell lines. HCVrv and a pseudotype VSV bearing the unmodified HCV envelope proteins (HCVpv) generated in 293T or Huh7 cells exhibited high infectivity in Huh7 cells. Generation of infectious HCVrv was limited in some cell lines examined. Furthermore, HCVrv but not HCVpv was able to propagate and form foci in Huh7 cells. The infection of Huh7 cells with HCVpv and HCVrv was neutralized by anti-hCD81 and anti-E2 antibodies and by sera from chronic HCV patients. The infectivity of HCVrv was inhibited by an endoplasmic reticulum alpha-glucosidase inhibitor, N-(n-nonyl) deoxynojirimycin (Nn-DNJ), but not by a Golgi mannosidase inhibitor, deoxymannojirimycin. Focus formation of HCVrv in Huh7 cells was impaired by Nn-DNJ treatment. These results indicate that the HCVrv developed in this study can be used to study HCV envelope proteins with respect to not only the biological functions in the entry process but also their maturation step. 相似文献
6.
Asymmetric distribution of phosphatidylethanolamine in the membrane of vesicular stomatitis virus. 总被引:3,自引:3,他引:3 下载免费PDF全文
The membrane-impermeable reagent trinitrobenzenesulfonate has been shown to react only with the surface components of vesicular stomatitis virus (VSV) membranes. When the amount of phosphatidylethanolamine (PE) available to modification by trinitrobenzenesulfonate in intact virions was determined, it was found that 36% of the total membrane PE was converted to the trinitrophenyl derivative. The same proportion of the total membrane PE was reactive after removal of the surface glycoprotein by trypsin digestion, but disruption of the virus membrane by sonication rendered all of the PE reactive. These results indicate that PE is asymmetrically distributed in the VSV membrane; 36% is present in the outer lipid leaflet, whereas 64% is found on the inner layer. 相似文献
7.
Site of synthesis of membrane and nonmembrane proteins of vesicular stomatitis virus. 总被引:44,自引:0,他引:44
T G Morrison 《The Journal of biological chemistry》1975,250(17):6955-6962
8.
9.
10.
Long-term antigen expression is believed to play an important role in modulation of T-cell responses to chronic virus infections. However, recent studies suggest that immune responses may occur late after apparently acute infections. We have now analyzed the CD8 T-cell response to vesicular stomatitis virus (VSV), which is thought to cause to an infection characterized by rapid virus clearance by innate and adaptive immune system components. Unexpectedly, virus-encoded antigen was detectable more than 6 weeks after intranasal VSV infection in both draining and nondraining lymph nodes by adoptively transferred CD8 T cells. Infection with Listeria monocytogenes expressing the same antigen did not result in prolonged antigen presentation. Weeks after VSV infection, discrete T-cell clustering with dendritic cells within the lymph node was observed after transfer of antigen-specific CD8 T cells. Moreover, memory CD8 T cells as defined by phenotype and function were generated from na?ve CD8 T cells entering the response late after infection. These findings suggested that protracted antigen presentation after an apparently acute virus infection may contribute to an ongoing antiviral immune response. 相似文献
11.
Translational control of protein synthesis after infection by vesicular stomatitis virus. 总被引:8,自引:14,他引:8 下载免费PDF全文
Four hours after infection of BHK cells by vesicular stomatitis virus (VSV), the rate of total protein synthesis was about 65% that of uninfected cells and synthesis of the 12 to 15 predominant cellular polypeptides was reduced to a level about 25% that of control cells. As determined by in vitro translation of isolated RNA and both one- and two-dimensional gel analyses of the products, all predominant cellular mRNA's remained intact and translatable after infection. The total amount of translatable mRNA per cell increased about threefold after infection; this additional mRNA directed synthesis of the five VSV structural proteins. To determine the subcellular localization of cellular and viral mRNA before and after infection, RNA from various sizes of polysomes and nonpolysomal ribonucleoproteins (RNPs) was isolated from infected and noninfected cells and translated in vitro. Over 80% of most predominant species of cellular mRNA was bound to polysomes in control cells, and over 60% was bound in infected cells. Only 2 of the 12 predominant species of translatable cellular mRNA's were localized to the RNP fraction, both in infected and in uninfected cells. The average size of polysomes translating individual cellular mRNA's was reduced about two- to threefold after infection. For example, in uninfected cells, actin (molecular weight 42,000) mRNA was found predominantly on polysomes with 12 ribosomes; after infection it was found on polysomes with five ribosomes, the same size of polysomes that were translating VSV N (molecular weight 52,000) and M (molecular weight 35,000) mRNA. We conclude that the inhibition of cellular protein synthesis after VSV infection is due, in large measure, to competition for ribosomes by a large excess of viral mRNA. The efficiency of initiation of translation on cellular and viral mRNA's is about the same in infected cells; cellular ribosomes are simply distributed among more mRNA's than are present in growing cells. About 20 to 30% of each of the predominant cellular and viral mRNA's were present in RNP particles in infected cells and were presumably inactive in protein synthesis. There was no preferential sequestration of cellular or viral mRNA's in RNPs after infection. 相似文献
12.
Separate pathways of maturation of the major structural proteins of vesicular stomatitis virus. 总被引:23,自引:25,他引:23 下载免费PDF全文
Cell fractionation and protein electrophoresis were used to study the intracellular sites of synthesis and intermediate structures in the assembly of the virion proteins of vesicular stomatitis virus. Each of the three major virion proteins assembled into virions through a separable pathway. The nucleocapsid (N) protein was first a soluble protein and later incorporated into free, cytoplasmic nucleocapsids. A small amount of N protein was bound to membranes at later times, presumably representing either nucleocapsids in the process of budding or completed virions attached to the cell surface. The matrix (M) protein also appeared to be synthesized as a soluble protein, but was then directly incorporated into membranous structures with the same density as whole virus. Very little M protein was ever found in membranes banding at the density of plasma membranes. The M protein entered extracellular virus very quickly, as though it moved directly from a soluble state into budding virus. In contrast, the glycoprotein (G) was always membrane bound; it appeared to be directly inserted into membranes during its synthesis. Glycosylation of the G protein was completed only in smooth membrane fractions, possibly in the Golgi apparatus. After a minimum time of 15 min following its synthesis, G protein was incorporated into the surface plasma membrane, from which it was slowly shed into virions. These multiple processing steps probably account for its delayed appearance in virus. From this work it appears that the three major structural proteins come into the surface budding structure through independent pathways and together they coalesce at the plasma membrane to form the mature virion. 相似文献
13.
Formation of vesicular stomatitis virus pseudotypes bearing surface proteins of hepatitis B virus 下载免费PDF全文
Saha MN Tanaka A Jinno-Oue A Shimizu N Tamura K Shinagawa M Chiba J Hoshino H 《Journal of virology》2005,79(19):12566-12574
It has been difficult to propagate and titrate hepatitis B virus (HBV) in tissue culture. We examined whether vesicular stomatitis virus (VSV) pseudotypes bearing HBV surface (HBs) proteins infectious for human cell lines could be prepared. For this, expression plasmids for three surface proteins, L, M, and S, of HBV were made. 293T cells were then transfected with these plasmids either individually or in different combinations. 293T cells expressing HBs proteins were infected with VSVdeltaG*-G, a recombinant VSV expressing green fluorescent protein (GFP), to make VSV pseudotypes. Culture supernatants together with cells were harvested and sonicated for a short time. The infectivities of freshly harvested supernatants were determined by quantifying the number of cells expressing GFP after neutralization with anti-VSV serum and mouse monoclonal antibodies (MAbs) against HBs protein. Among 14 cell lines tested for susceptibility to HBV pseudotype samples, HepG2, JHH-7, and 293T cells were judged to be the most susceptible. Namely, the infectious units (IU) of the culture supernatant samples neutralized with anti-VSV in the absence and presence of anti-HBs S MAbs and titrated on HepG2 cells ranged from 1,000 to 4,000 IU/ml and 200 to 400 IU/ml, respectively, suggesting the presence of VSVdeltaG*(HBV) pseudotypes. This infectivity was inhibited by treatment with lactoferrin or dextran sulfate. Pretreatment of the cells with trypsin or tunicamycin inhibited plating of the pseudotype samples. The HBV pseudotypes can be used to analyze early steps of HBV infection, including the entry mechanism of HBV. 相似文献
14.
Carbohydrate structure of vesicular stomatitis virus glycoprotein. 总被引:20,自引:0,他引:20
15.
Viral assembly was studied by viewing platinum replicas of cytoplasmic and outer plasma membrane surfaces of baby hamster kidney cells infected with vesicular stomatitis virus. Replicas of the cytoplasmic surface of the basilar plasma membrane revealed nucleocapsids forming bullet-shaped tight helical coils. The apex of each viral nose cone was anchored to the membrane and was free of uncoiled nucleocapsid, whereas tortuous nucleocapsid was attached to the base of tightly coiled structures. Using immunoelectron microscopy, we identified the nucleocapsid (N) viral protein as a component of both the tight-coil and tortuous nucleocapsids, whereas the matrix (M) protein was found only on tortuous nucleocapsids. The M protein was not found on the membrane. Using immunoreagents specific for the viral glycoprotein (G protein), we found that the amount of G protein per virion varied. The G protein was consistently localized at the apex of viral buds, whereas the density of G protein on the shaft was equivalent to that in the surrounding membrane. These observations suggest that G-protein interaction with the nucleocapsid via its cytoplasmic domain may be necessary for the initiation of viral assembly. Once contact is established, nucleocapsid coiling proceeds with nose cone formation followed by formation of the helical cylinder. M protein may function to induce a nucleocapsid conformation favorable for coiling or may cross-link adjacent turns in the tight coil or both. 相似文献
16.
Detailed analysis on DEAE-Sephadex of the tryptic digestion products of the glycoprotein from vesicular stomatitis virus grown in HeLa suspension cultures revealed the presence of two major and several minor sugar-labeled species. The minor tryptic glycopeptides were converted to one of the two major glycopeptide species by treatment with neuraminidase. Thus, vesicular stomatitis virus glycoprotein contains only two oligosaccharide side chains that are heterogeneous in their sialic acid content. 相似文献
17.
18.
19.
The transmembrane movement and distribution of cholesterol in the vesicular stomatitis virus membrane were studied by following the depletion of cholesterol from virions to interacting phospholipid vesicles and by exchange of radiolabeled cholesterol between virions and phospholipid-cholesterol vesicles. The kinetics of the cholesterol exchange or depletion reactions revealed the presence of two exponential rates: a rapid rate, dependent on the vesicle to virus ratio, and a slower rate, independent of the vesicle to virus ratio. The kinetics of cholesterol movement could be best interpreted by a model of the virion membrane considered as a two pool system in which approximately 30% of the cholesterol resides in the outer monolayer and approximately 70% in the inner monolayer. The half-time for equilibration of the two pools was calculated to be 4--6 h and was assumed to represent the time required for transmembrane movement of cholesterol across the bilayer. The initial rate of transfer of cholesterol from virus into vesicles increased when vesicle phospholipids contained more unsaturated and shorter chain fatty acids. Furthermore, the transfer of cholesterol appeared to occur by a collisional mechanism requiring membrane-membrane contact. Interaction with lipid vesicles did not significantly affect the integrity of the virion membrane as assessed by the relative inaccessibility of internal proteins to lactoperoxidase-catalyzed iodination and by the small loss of [3H]amino acid labeled protein from the virus. 相似文献
20.
McCombs, Robert M. (Baylor University College of Medicine, Houston, Tex.), Matilda Benyesh-Melnick, and Jean P. Brunschwig. Biophysical studies of vesicular stomatitis virus: J. Bacteriol. 91:803-812. 1966.-The infectivity and morphology of vesicular stomatitis virus (VSV) were studied after density gradient centrifugation in cesium chloride (CsCI), potassium tartrate (KT), and sucrose. Centrifugation in CsCl revealed two equally infectious bands corresponding to densities of 1.19 and 1.22 g/ml, and a third (density, 1.26 g/ml) band of low infectivity. Two bands (densities of 1.16 and 1.18 g/ml) were observed in the KT gradient, in which the lighter band contained most of the infectivity. Centrifugation in sucrose resulted in a single broad infectious band (density, 1.16 g/ml). The typical rod-shaped VSV particles were found mainly in the lighter bands obtained in CsCl (1.19 g/ml) and KT (1.16 g/ml) and in the single sucrose gradient band (1.16 g/ml). Bent particles equally as infectious as the rod-shaped particles were a constant finding in the CsCl preparations, and were observed mainly in the second band (density, 1.19 g). Numerous strands 15mmu wide were found in the third CsCl (density, 1.26 g/ml) and the second KT (1.18 g/ml) bands. Similar strands could be liberated from VSV particles after treatment with deoxycholate. Internal transverse striations were found to be a regular feature of VSV particles examined with the pseudoreplication negative-staining technique. For crude virus stocks, the physical particle-to-infectivity ratio ranged from 73 to 194. Several morphological similarities between VSV and myxoviruses were observed, including 10 mmu surface projections, pleomorphic morphological forms, and 15 mmu seemingly nucleoprotein strands. 相似文献