首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying linkages between life-history traits and small population processes is essential to effective multispecies conservation. Reproductive asynchrony, which occurs when individuals are reproductively active for only a portion of the population-level breeding period, may provide one such link. Traditionally, reproductive asynchrony has been considered from evolutionary perspectives as an advantageous bet-hedging strategy in temporally unpredictable environments. Here, we explore the dynamic consequences of reproductive asynchrony as a density-dependent life-history trait. To examine how asynchrony affects population growth rate and extinction risk, we used a general model of reproductive timing to quantify the temporal overlap of opposite-sex individuals and to simulate population dynamics over a range of initial densities and empirical estimates of reproductive asynchrony. We also considered how protandry, a sexually selected life-history strategy that often accompanies asynchrony, modulates the population-level effects of reproductive asynchrony. We found that asynchrony decreases the number of males a female overlaps with, decreases the average probability of mating per male/female pair that does overlap, and leaves some females completely isolated in time. This loss of reproductive potential, which is exacerbated by protandry, reduces population growth rate at low density and can lead to extinction via an Allee effect. Thus reproductive asynchrony and protandry, both of which can be evolutionarily advantageous at higher population densities, may prove detrimental when population density declines.  相似文献   

2.
Abstract Using a metapopulation model, we study how local extinctions, limited population life span, and local demographic disequilibrium affect the evolution of the reproductive effort in a species with overlapping generations but no senescence. We show that in a metapopulation with saturation of all sites and an infinite deme maximal life span (no succession), local extinctions simply constitute an additional source of extrinsic mortality. When either the hypothesis of an infinite deme maximal life span or the saturation hypothesis is relaxed, nontrivial predictions arise. in particular, we find interactions between the evolutionarily stable reproductive effort strategy and the demographic dynamics in the metapopulation. We predict that larger reproductive effort may be selected for in habitats of poorer productivity, contrary to what would be predicted in a single population. Also, we predict that higher dispersal rates should favor selection for lower reproductive efforts. However, metapopulation parameters that favor high dispersal rates also favor larger reproductive efforts. Conflicting selection pressures in the metapopulation also allow maintaining evolutionarily stable polymorphism between a low and high reproductive effort for particular trade-offs between survival and fecundity.  相似文献   

3.
A goal of life-history theory has been to understand what combination of demographic traits is maximized by natural selection. In practice, researchers usually choose either density-independent population growth rate, lambda, or lifetime reproductive success, R0 (expected number of offspring produced in a lifetime). Others have shown that the maxima of density-independent lambda and R0 are evolutionarily stable strategies under specific density-dependent conditions: population regulation by equal density dependence among all age classes for lambda and by density dependence on a single age class for R0. Here I extend these connections between density-independent optimization models and density-dependent invasion function models in two ways. First, I derive a new demographic function for which a maximum corresponds to attainability of the equilibrium strategy or stability of the mean rather than stability of the variance of the strategy distribution. Second, I show explicitly a continuous range of cases with maxima between those for the lambda and R0. Graphical and biological interpretations are given for an example model. Finally, exceptions to a putative life-history generality (from lambda and R0 models), that high early-life mortality selects for high iteroparity, are shown.  相似文献   

4.
Substantial theoretical and empirical evidence demonstrates that fertility entails economic, physiological, and demographic trade-offs. The existence of trade-offs suggests that fitness should be maximized by an intermediate level of fertility, but this hypothesis has not had much support in the human life-history literature. We suggest that the difficulty of finding intermediate optima may be a function of the way fitness is calculated. Evolutionary analyses of human behavior typically use lifetime reproductive success as their fitness criterion. This fitness measure implicitly assumes that women are indifferent to the timing of reproduction and that they are risk-neutral in their reproductive decision-making. In this paper, we offer an alternative, easily-calculated fitness measure that accounts for differences in reproductive timing and yields clear preferences in the face of risky reproductive decision-making. Using historical demographic data from a genealogically-detailed dataset from 19th century Utah, we show that this measure is highly concave with respect to reproductive effort. This result has three major implications: (1) if births are properly timed, a lower-fertility reproductive strategy can have the same fitness as a high-fertility strategy, (2) intermediate optima are far more likely using fitness measures that are strongly concave with respect to effort, (3) we expect mothers to have strong investment preferences with respect to the risk inherent in reproduction.  相似文献   

5.
Caswell H 《PloS one》2011,6(6):e20809
The net reproductive rate R0 measures the expected lifetime reproductive output of an individual, and plays an important role in demography, ecology, evolution, and epidemiology. Well-established methods exist to calculate it from age- or stage-classified demographic data. As an expectation, R0 provides no information on variability; empirical measurements of lifetime reproduction universally show high levels of variability, and often positive skewness among individuals. This is often interpreted as evidence of heterogeneity, and thus of an opportunity for natural selection. However, variability provides evidence of heterogeneity only if it exceeds the level of variability to be expected in a cohort of identical individuals all experiencing the same vital rates. Such comparisons require a way to calculate the statistics of lifetime reproduction from demographic data. Here, a new approach is presented, using the theory of Markov chains with rewards, obtaining all the moments of the distribution of lifetime reproduction. The approach applies to age- or stage-classified models, to constant, periodic, or stochastic environments, and to any kind of reproductive schedule. As examples, I analyze data from six empirical studies, of a variety of animal and plant taxa (nematodes, polychaetes, humans, and several species of perennial plants).  相似文献   

6.
Environmental stochasticity is known to play an important role in life-history evolution, but most general theory assumes a constant environment. In this paper, we examine life-history evolution in a variable environment, by decomposing average individual fitness (measured by the long-run stochastic growth rate) into contributions from average vital rates and their temporal variation. We examine how generation time, demographic dispersion (measured by the dispersion of reproductive events across the lifespan), demographic resilience (measured by damping time), within-year variances in vital rates, within-year correlations between vital rates and between-year correlations in vital rates combine to determine average individual fitness of stylized life histories. In a fluctuating environment, we show that there is often a range of cohort generation times at which the fitness is at a maximum. Thus, we expect ‘optimal’ phenotypes in fluctuating environments to differ from optimal phenotypes in constant environments. We show that stochastic growth rates are strongly affected by demographic dispersion, even when deterministic growth rates are not, and that demographic dispersion also determines the response of life-history-specific average fitness to within- and between-year correlations. Serial correlations can have a strong effect on fitness, and, depending on the structure of the life history, may act to increase or decrease fitness. The approach we outline takes a useful first step in developing general life-history theory for non-constant environments.  相似文献   

7.
Pulsed resource subsidies can have profound effects on recipient communities. The effects of resource pulses are often mediated by increases in the density of consumer populations. Here we investigate several mechanisms linking experimental pulses of seaweed deposition to population‐level responses in the brown anole Anolis sagrei. Subsidized lizards grew approximately 30% faster than lizards in seaweed‐removal plots, but there was no effect of seaweed subsidies on survival or body condition. Breeding is strongly seasonal in A. sagrei, resulting in a limited reproductive window of opportunity. Accelerated growth allows subsidized females to reach sexual maturity earlier and thereby exploit more of this window, which is projected to double fecundity in their first year of life. These results show how changes in an individual trait can translate pulses of resource input into reproductive output. Further, they highlight the importance of seasonal timing in mechanistically linking individual‐, population‐ and community‐level responses to pulsed resource subsidies.  相似文献   

8.
In a 1966 American Naturalist article, G. C. Williams initiated the study of reproductive effort (RE) with the prediction that longer-lived organisms ought to expend less in reproduction per unit of time. We can multiply RE, often measured in fractions of adult body mass committed to reproduction per unit time, by the average adult life span to get lifetime reproductive effort (LRE). Williams's hypothesis (across species, RE decreases as life span increases) can then be refined to read "LRE will be approximately constant for similar organisms." Here we show that LRE is a key component of fitness in nongrowing populations, and thus its value is central to understanding life-history evolution. We then develop metabolic life-history theory to predict that LRE ought to be approximately 1.4 across organisms despite extreme differences in production and growth rates. We estimate LRE for mammals and lizards that differ in growth and production by five- to tenfold. The distributions are approximately normal with means of 1.43 and 1.41 for lizards and mammals, respectively (95% confidence intervals: 1.3-1.5 and 1.2-1.6). Ultimately, therefore, a female can only produce a mass of offspring approximately equal to 1.4 times her own body mass during the course of her life.  相似文献   

9.
Estimating the population growth rate and environmental stochasticity of long-lived species is difficult because annual variation in population size is influenced by temporal autocorrelations caused by fluctuations in the age-structure. Here we use the dynamics of the reproductive value to estimate the long-term growth rate s and the environmental variance of a moose population that recently colonized the island of Vega in northern Norway. We show that the population growth rate was high (ŝ=0.26). The major stochastic influences on the population dynamics were due to demographic stochasticity, whereas the environmental variance was not significantly different from 0. This supports the suggestion that population growth rates of polytocous ungulates are high, and that demographic stochasticity must be assessed when estimating the growth of small ungulate populations.  相似文献   

10.
For populations having dispersal described by fat-tailed kernels (kernels with tails that are not exponentially bounded), asymptotic population spread rates cannot be estimated by traditional models because these models predict continually accelerating (asymptotically infinite) invasion. The impossible predictions come from the fact that the fat-tailed kernels fitted to dispersal data have a quality (nondiscrete individuals and, thus, no moment-generating function) that never applies to data. Real organisms produce finite (and random) numbers of offspring; thus, an empirical moment-generating function can always be determined. Using an alternative method to estimate spread rates in terms of extreme dispersal events, we show that finite estimates can be derived for fat-tailed kernels, and we demonstrate how variable reproduction modifies these rates. Whereas the traditional models define spread rate as the speed of an advancing front describing the expected density of individuals, our alternative definition for spread rate is the expected velocity for the location of the furthest-forward individual in the population. The asymptotic wave speed for a constant net reproductive rate R0 is approximated as (1/T)(piuR)/2)(1/2) m yr(-1), where T is generation time, and u is a distance parameter (m2) of Clark et al.'s 2Dt model having shape parameter p = 1. From fitted dispersal kernels with fat tails and infinite variance, we derive finite rates of spread and a simple method for numerical estimation. Fitted kernels, with infinite variance, yield distributions of rates of spread that are asymptotically normal and, thus, have finite moments. Variable reproduction can profoundly affect rates of spread. By incorporating the variance in reproduction that results from variable life span, we estimate much lower rates than predicted by the standard approach, which assumes a constant net reproductive rate. Using basic life-history data for trees, we show these estimated rates to be lower than expected from previous analytical models and as interpreted from paleorecords of forest spread at the end of the Pleistocene. Our results suggest reexamination of past rates of spread and the potential for future response to climate change.  相似文献   

11.
The evolutionary theory of senescence predicts that high extrinsic mortality in natural populations should select for accelerated reproductive investment and shortened life span. Here, we test the theory with natural populations of the Daphnia pulex-pulicaria species complex, a group of freshwater zooplankton that spans an environmental gradient of habitat permanence. We document substantial genetic variation in demographic life-history traits among parent and hybrid populations of this complex. Populations from temporary ponds have shorter life spans, earlier and faster increases of intrinsic mortality risk, and earlier and steeper declines in fecundity than populations from permanent lakes. We also examine the age-specific contribution to fitness, measured by reproductive value, and to expected lifetime reproduction; these traits decline faster in populations from temporary ponds. Despite having more rapid senescence, pond Daphnia exhibit faster juvenile growth and higher early fitness, measured as population growth rate (r). Among populations within this species complex we observed negative genetic correlations between r and indices of life-history timing, suggesting trade-offs between early- and late-life performance. Our results cannot be explained by a trade-off between survival and fecundity or by nonevolutionary theories of senescence. Instead, our data are consistent with the evolutionary theory of senescence because the genetic variation in life histories we observed is roughly congruent with the temporal scale of environmental change in the field.  相似文献   

12.
Evolutionary theory predicts that differential reproductive effort and rate of reproductive senescence will evolve under different rates of external mortality. We examine the evolutionary divergence of age-specific reproduction in two life-history ecotypes of the western terrestrial garter snake, Thamnophis elegans. We test for the signature of reproductive senescence (decreasing fecundity with age) and increasing reproductive effort with age (increasing reproductive productivity per gram female) in replicate populations of two life-history ecotypes: snakes that grow fast, mature young and have shorter lifespans, and snakes that grow slow, mature late and have long lives. The difference between life-history ecotypes is due to genetic divergence in growth rate. We find (i) reproductive success (live litter mass) increases with age in both ecotypes, but does so more rapidly in the fast-growth ecotype, (ii) reproductive failure increases with age in both ecotypes, but the proportion of reproductive failure to total reproductive output remains invariant, and (iii) reproductive effort remains constant in fast-growth individuals with age, but declines in slow-growth individuals. This illustration of increasing fecundity with age, even at the latest ages, deviates from standard expectations for reproductive senescence, as does the lack of increases in reproductive effort. We discuss our findings in light of recent theories regarding the phenomenon of increased reproduction throughout life in organisms with indeterminate growth and its potential to offset theoretical expectations for the ubiquity of senescence.  相似文献   

13.
Abstract Although understanding female reproduction is crucial for population demography, determining how and to what relative extent it is constrained by different ecological factors is complicated by difficulties in studying the links between individual behavior, life history, and fitness in nature. We present data on females in a natural population of the butterfly Leptidea sinapis. These data were combined with climate records and laboratory estimates of life-history parameters to predict the relative impact of different ecological constraints on female fitness in the wild. Using simulation models, we partitioned effects of male courtship, host plant availability, and temperature on female fitness. Results of these models indicate that temperature is the most constraining factor on female fitness, followed by host plant availability; the short-term negative effects of male courtship that were detected in the field study were less important in models predicting female reproductive success over the entire life span. In the simulations, females with more reproductive reserves were more limited by the ecological variables. Reproductive physiology and egg-laying behavior were therefore predicted to be co-optimized but reach different optima for females of different body sizes; this prediction is supported by the empirical data. This study thus highlights the need for studying behavioral and life-history variation in orchestration to achieve a more complete picture of both demographic and evolutionary processes in naturally variable and unpredictable environments.  相似文献   

14.
A key question in the evolution of life history and in evolutionary physiology asks how reproductive and other life-history traits evolve. Genetic variation in reproductive control systems may exist in many elements of the complex inputs that can affect the hypothalamic-pituitary-gonadal (HPG) or reproductive axis. Such variation could include numbers and other traits of secretory cells, the amount and pattern of chemical message released, transport and clearance mechanisms, and the number and other traits of receptor cells. Selection lines created from a natural population of white-footed mice (Peromyscus leucopus) that contains substantial genetic variation in reproductive inhibition in response to short winter daylength (SD) have been used to examine neuroendocrine variation in reproductive timing. We hypothesized that natural genetic variation would be most likely to occur in the inputs to GnRH neurons and/or in GnRH neurons themselves, but not in elements of the photoperiodic pathway that would have pleiotropic effects on nonreproductive functions as well as on reproductive functions. Significant genetic variation has been found in the GnRH neuronal system. The number of GnRH neurons immunoreactive to an antibody to mature GnRH peptide under conditions maximizing detection of stained neurons was significantly heritable in an unselected control (C) line. Furthermore, a selection line that suppresses reproduction in SD (photoperiod responsive, R) had fewer IR-GnRH neurons than a selection line that maintains reproduction in SD (photoperiod nonresponsive, NR). This supports the hypothesis that genetic variation in characteristics of GnRH neurons themselves may be responsible for the observed phenotypic variation in reproduction in SD. The R and NR lines differ genetically in food intake and iodo-melatonin receptor binding, as well as in other characteristics. The latter findings are consistent with the hypothesis that genetic variation occurs in the nutritional and hormonal inputs to GnRH neurons. Genetic variation also exists in the phenotypic plasticity of responses to two combinations of treatments, (1) food and photoperiod, and (2) photoperiod and age, indicating genetic variation in individual norms of reaction within this population. Overall, the apparent multiple sources of genetic variation within this population suggest that there may be multiple alternative combinations of alleles for both the R and NR phenotypes. If that interpretation is correct, we suggest that this offers some support for the evolutionary "potential" hypothesis and is inconsistent with the evolutionary "constraint" and "symmorphosis" hypotheses for the evolution of complex neuroendocrine pathways.  相似文献   

15.
We are now reaching the stage at which specific genetic factors with known physiological effects can be tied directly and quantitatively to variation in phenology. With such a mechanistic understanding, scientists can better predict phenological responses to novel seasonal climates. Using the widespread model species Arabidopsis thaliana, we explore how variation in different genetic pathways can be linked to phenology and life-history variation across geographical regions and seasons. We show that the expression of phenological traits including flowering depends critically on the growth season, and we outline an integrated life-history approach to phenology in which the timing of later life-history events can be contingent on the environmental cues regulating earlier life stages. As flowering time in many plants is determined by the integration of multiple environmentally sensitive gene pathways, the novel combinations of important seasonal cues in projected future climates will alter how phenology responds to variation in the flowering time gene network with important consequences for plant life history. We discuss how phenology models in other systems—both natural and agricultural—could employ a similar framework to explore the potential contribution of genetic variation to the physiological integration of cues determining phenology.  相似文献   

16.
Lifetime reproductive effort (LRE) measures the total amount of metabolized energy diverted to reproduction during the lifespan. LRE captures key components of the life history and is particularly useful for describing and comparing the life histories of different organisms. Given a simple energetic production constraint, LRE is predicted to be similar in value for very different life histories. However, humans have some unique ecological characteristics that may alter LRE, such as the long post-reproductive lifespan, lengthy juvenile period and the cooperative nature of human foraging and reproduction. We calculate LRE for natural fertility human populations, compare the findings to other mammals and discuss the implications for human life-history evolution. We find that human life-history traits combine to yield the theoretically predicted value (approx. 1.4). Thus, even with the subsidized energy budget and uniqueness of the adult lifespan, human reproductive strategies converge on the same optimal value of LRE. This suggests that the fundamental demographic variables contained in LRE trade-off against one another in a predictable and highly constrained manner.  相似文献   

17.
Shpak M 《Genetics》2007,177(4):2181-2194
It has been shown that differences in fecundity variance can influence the probability of invasion of a genotype in a population; i.e., a genotype with lower variance in offspring number can be favored in finite populations even if it has a somewhat lower mean fitness than a competitor. In this article, Gillespie's results are extended to population genetic systems with explicit age structure, where the demographic variance (variance in growth rate) calculated in the work of Engen and colleagues is used as a generalization of "variance in offspring number" to predict the interaction between deterministic and random forces driving change in allele frequency. By calculating the variance from the life-history parameters, it is shown that selection against variance in the growth rate will favor a genotypes with lower stochasticity in age-specific survival and fertility rates. A diffusion approximation for selection and drift in a population with two genotypes with different life-history matrices (and therefore different mean growth rates and demographic variances) is derived and shown to be consistent with individual-based simulations. It is also argued that for finite populations, perturbation analyses of both the mean and the variance in growth rate may be necessary to determine the sensitivity of fitness to changes in the life-history parameters.  相似文献   

18.
A trade-off between sex and somatic maintenance is fundamental to life-history theory. Tests of this trade-off usually emphasize deleterious consequences of increased reproduction on life span. Here we show the reverse effect, that reductions in the expected life span elevate sexual activity. Experimentally parasitized male Drosophila nigrospiracula lived shorter lives, but before dying, they courted females significantly more than unparasitized controls. This greater courtship resulted in increased mating speed, and potentially greater reproductive success than parasitized males would have achieved otherwise. The results show that an environmental reduction in life span increases reproductive effort, and support the hypothesis of a trade-off between these key life-history traits.  相似文献   

19.
Trade-offs between current and future reproduction shape life histories of organisms, e.g. increased mortality selects for earlier reproductive effort, and mate limitation has been shown to shape male life histories. Here, we show that female life histories respond adaptively to mate limitation. Female common gobies (Pomatoschistus microps) respond to a female-biased operational sex ratio by strongly increasing the size of their first clutch. The plastic response is predicted by a model that assumes that females use the current competitive situation to predict future difficulties of securing a mating. Because female clutch size decisions are much more closely linked to population dynamics than male life-history traits, plastic responses to mate-finding limitations may be an underappreciated force in population dynamics.  相似文献   

20.
Sexual ornaments are predicted to honestly signal individual condition. We might therefore expect ornament expression to show a senescent decline, in parallel with late-life deterioration of other characters. Conversely, life-history theory predicts the reduced residual reproductive value of older individuals will favor increased investment in sexually attractive traits. Using a 25-year dataset of more than 5000 records of breeding collared flycatchers (Ficedula albicollis) of known age, we quantify cross-sectional patterns of age-dependence in ornamental plumage traits and report long-term declines in expression that mask highly significant positive age-dependency. We partition this population-level age-dependency into its between- and within-individual components and show expression of ornamental white plumage patches exhibits within-individual increases with age in both sexes, consistent with life-history theory. For males, ornament expression also covaries with life span, such that, within a cohort, ornamentation indicates survival. Finally, we compared longitudinal age-dependency of reproductive traits and ornamental traits in both sexes, to assess whether these two trait types exhibit similar age-dependency. These analyses revealed contrasting patterns: reproductive traits showed within-individual declines in late-life females consistent with senescence; ornamental traits showed the opposite pattern in both males and females. Hence, our results for both sexes suggest that age-dependent ornament expression is consistent with life-history models of optimal signaling and, unlike reproductive traits, proof against senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号