共查询到20条相似文献,搜索用时 15 毫秒
1.
Ana Claudia Cardoso de Oliveira Demarchi Willian Fernando Zambuzzi Katiúcia Batista Silva Paiva Maria das Graças da Silva-Valenzuela Fabio Daumas Nunes Rita de Cássia Sávio Figueira Regina Maki Sasahara Marcos Angelo Almeida Demasi Sheila Maria Brochado Winnischofer Mari Cleide Sogayar José Mauro Granjeiro 《Cell and tissue research》2010,340(1):61-69
2.
A Cl/HCO3 exchanger mediates HCO3 extrusion across rat jejunal basolateral membrane. Previous studies demonstrated that anion antiport activity is positively affected by Na, but evidence was given that this cation is not translocated by the carrier protein. Basolateral membranes isolated from rat jejunum were used to give more insight on Na effect. Uptake studies, performed together with vesicle sidedness determinations, indicated that the greatest stimulation of Cl-dependent HCO3 uptake occurs when Na is present at both vesicle surfaces. The kinetic dependence of Cl/HCO3 exchange on equal intra- and extravesicular Na concentration showed a hyperbolic relationship, and the calculated kinetic parameters were V
max=0.153 ± 0.006 nmol mg protein-1 sec-1, K
m
=23.0 Mm. Ion replacement studies indicated that Na can be partially substituted only by Li and not by other monovalent cations. Results of this study suggest that Na could act as a nonessential activator of the Cl/HCO3 exchanger. A possible role of the Na-sensitive modifier site in the physiology of jejunal enterocyte is suggested. 相似文献
3.
Zofall M Persinger J Kassabov SR Bartholomew B 《Nature structural & molecular biology》2006,13(4):339-346
Chromatin-remodeling complexes regulate access to nucleosomal DNA by mobilizing nucleosomes in an ATP-dependent manner. In this study, we find that chromatin remodeling by SWI/SNF and ISW2 involves DNA translocation inside nucleosomes two helical turns from the dyad axis at superhelical location-2. DNA translocation at this internal position does not require the propagation of a DNA twist from the site of translocation to the entry/exit sites for nucleosome movement. Nucleosomes are moved in 9- to 11- or approximately 50-base-pair increments by ISW2 or SWI/SNF, respectively, presumably through the formation of DNA loops on the nucleosome surface. Remodeling by ISW2 but not SWI/SNF requires DNA torsional strain near the site of translocation, which may work in conjunction with conformational changes of ISW2 to promote nucleosome movement on DNA. The difference in step size of nucleosome movement by SWI/SNF and ISW2 demonstrates how SWI/SNF may be more disruptive to nucleosome structure than ISW2. 相似文献
4.
Nucleosome remodeling by the human SWI/SNF complex requires transient global disruption of histone-DNA interactions 下载免费PDF全文
Aoyagi S Narlikar G Zheng C Sif S Kingston RE Hayes JJ 《Molecular and cellular biology》2002,22(11):3653-3662
We utilized a site-specific cross-linking technique to investigate the mechanism of nucleosome remodeling by hSWI/SNF. We found that a single cross-link between H2B and DNA virtually eliminates the accumulation of stably remodeled species as measured by restriction enzyme accessibility assays. However, cross-linking the histone octamer to nucleosomal DNA does not inhibit remodeling as monitored by DNase I digestion assays. Importantly, we found that the restriction enzyme-accessible species can be efficiently cross-linked after remodeling and that the accessible state does not require continued ATP hydrolysis. These results imply that the generation of stable remodeled states requires at least transient disruption of histone-DNA interactions throughout the nucleosome, while hSWI/SNF-catalyzed disruption of just local histone-DNA interactions yields less-stable remodeled states that still display an altered DNase I cleavage pattern. The implications of these results for models of the mechanism of SWI/SNF-catalyzed nucleosome remodeling are discussed. 相似文献
5.
6.
7.
Anabel Soldano Huili Yao Mario Rivera Eduardo A. Ceccarelli Daniela L. Catalano-Dupuy 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Heme oxygenase catalyzes the conversion of heme to iron, carbon monoxide and biliverdin employing oxygen and reducing equivalents. This enzyme is essential for heme-iron utilization and contributes to virulence in Leptospira interrogans.Methods
A phylogenetic analysis was performed using heme oxygenases sequences from different organisms including saprophytic and pathogenic Leptospira species. L. interrogans heme oxygenase (LepHO) was cloned, overexpressed and purified. The structural and enzymatic properties of LepHO were analyzed by UV–vis spectrophotometry and 1H NMR. Heme-degrading activity, ferrous iron release and biliverdin production were studied with different redox partners.Results
A plastidic type, high efficiently ferredoxin-NADP+ reductase (LepFNR) provides the electrons for heme turnover by heme oxygenase in L. interrogans. This catalytic reaction does not require a ferredoxin. Moreover, LepFNR drives the heme degradation to completeness producing free iron and α-biliverdin as the final products. The phylogenetic divergence between heme oxygenases from saprophytic and pathogenic species supports the functional role of this enzyme in L. interrogans pathogenesis.Conclusions
Heme-iron scavenging by LepHO in L. interrogans requires only LepFNR as redox partner. Thus, we report a new substrate of ferredoxin-NADP+ reductases different to ferredoxin and flavodoxin, the only recognized protein substrates of this flavoenzyme to date. The results presented here uncover a fundamental step of heme degradation in L. interrogans.General significance
Our findings contribute to understand the heme-iron utilization pathway in Leptospira. Since iron is required for pathogen survival and infectivity, heme degradation pathway may be relevant for therapeutic applications. 相似文献8.
Daniel Pea-Oyarzun Marcelo Rodriguez-Pea Francesca Burgos-Bravo Angelo Vergara Catalina Kretschmar Cristian Sotomayor-Flores Cesar A. Ramirez-Sarmiento Humbert De Smedt Montserrat Reyes William Perez Vicente A. Torres Eugenia Morselli Francisco Altamirano Christian A. M. Wilson Joseph A. Hill Sergio Lavandero Alfredo Criollo 《Autophagy》2021,17(7):1714
9.
Na(+)/glucose cotransport by SGLT1 is a tightly coupled process that is driven by the Na(+) electrochemical gradient across the plasma membrane. We have previously proposed that SGLT1 contains separate Na(+)- and glucose-binding domains, that A166 (in the Na(+) domain) is close to D454 (in the sugar domain), and that interactions between these residues influence sugar specificity and transport. We have now expressed the mutant D454C in Xenopus laevis oocytes and examined the role of charge on residue 454 by replacing the Asp with Cys or His, and by chemical mutation of D454C with alkylating reagents of different charge (MTSES(-), MTSET(+), MMTS(0), MTSHE(0), and iodoacetate(-)). Functional properties were examined by measuring sugar transport and cotransporter currents. In addition, D454C was labeled with fluorescent dyes and the fluorescence of the labeled transporter was recorded as a function of voltage and ligand concentration. The data shows that (1) aspartate 454 is critically important for the normal trafficking of the protein to the plasma membrane; (2) there were marked changes in the functional properties of D454C, i.e., a reduction in turnover number and a loss of voltage sensitivity, although there were no alterations in sugar selectivity or sugar and Na(+) affinity; (3) a negative charge on residue 454 increased Na(+) and sugar transport with a normal stoichiometry of 2 Na(+):1 sugar. A positive charge on residue 454, in contrast, uncoupled Na(+) and sugar transport, indicating the importance of the negative charge in the coordination of the cotransport mechanism. 相似文献
10.
Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. 总被引:33,自引:2,他引:33 下载免费PDF全文
T Skorski A Bellacosa M Nieborowska-Skorska M Majewski R Martinez J K Choi R Trotta P Wlodarski D Perrotti T O Chan M A Wasik P N Tsichlis B Calabretta 《The EMBO journal》1997,16(20):6151-6161
11.
12.
Glenn J. Treisman Nancy Muirhead Lynn Iwaniec Margaret E. Gnegy 《Journal of neurochemistry》1985,44(2):518-525
In rat striatum, the activation of adenylate cyclase by the endogenous Ca2+-binding protein, calmodulin, is additive with that of GTP but is not additive with that of the nonhydrolyzable GTP analog, guanosine-5'-(beta, gamma-imido)triphosphate (GppNHp). One possible mechanism for this difference could be an effect of calmodulin on GTPase activity which has been demonstrated to "turn-off" adenylate cyclase activity. We examined the effects of Ca2+ and calmodulin on GTPase activity in EGTA-washed rat striatal particulate fractions depleted of Ca2+ and calmodulin. Calmodulin inhibited GTP hydrolysis at concentrations of 10(-9)-10(-6) M but had no effect on the hydrolysis of 10(-5) and 10(-6) M GTP, suggesting that calmodulin inhibited a low Km GTPase activity. The inhibition of GTPase activity by calmodulin was Ca2+-dependent and was maximal at 0.12 microM free Ca2+. Maximal inhibition by calmodulin was 40% in the presence of 10(-7) M GTP. The IC50 for calmodulin was 100 nM. In five tissues tested, calmodulin inhibited GTP hydrolysis only in those tissues where it could also activate adenylate cyclase. Calmodulin could affect the activation of adenylate cyclase by GTP in the presence of 3,4-dihydroxyphenylethylamine (DA, dopamine). Calmodulin decreased by nearly 10-fold the concentration of GTP required to provide maximal stimulation of adenylate cyclase activity by DA in the striatal membranes. The characteristics of the effect of calmodulin on GTPase activity with respect to Ca2+ and calmodulin dependence and tissue specificity parallel those of the activation of adenylate cyclase by calmodulin, suggesting that the two activities are closely related.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
Identification of a BALB/c-3T3 cell protein modulated by platelet-derived growth factor. 总被引:6,自引:4,他引:6 下载免费PDF全文
The platelet-derived growth factor (PDGF) stimulates density-arrested BALB/c-3T3 cells to synthesize a protein (pII; Mr, 35,000) that is constitutively synthesized by spontaneously transformed BALB/c-3T3 (ST2-3T3) cells which do not require PDGF for growth. Antisera against a major excreted protein family (MEP) of retrovirus-transformed cells quantitatively precipitated cellular pII. PDGF-stimulated pII has the same molecular weight, a similar charge, and similar antigenic determinants as authentic MEP isolated from ST2-3T3 or retrovirus-transformed cells. MEP represented about 2% of the nonnuclear proteins synthesized by ST2-3T3 cells and 0.3 to 0.6% of the proteins synthesized by PDGF-treated BALB/c-3T3 cells, a three- to sixfold increase over the background. In BALB/c-3T3 cells, less PDGF was required for pII (MEP) synthesis than for DNA synthesis. PDGF induced a selective increase in pII (MEP) within 40 min. Such preferential synthesis was inhibited by brief treatment with actinomycin D, suggesting a requirement for newly formed RNA. The constitutive synthesis of pII (MEP) by ST2-3T3 cells was not inhibited by actinomycin D. Five spontaneously or chemical carcinogen-transformed tumorigenic BALB/c-3T3 cell lines were studied; they neither required PDGF for growth nor responded to it. These cell lines became arrested at confluence with a G1 DNA content. Each of these independently isolated lines synthesized pII (MEP) constitutively. Thus, the synthesis of pII (MEP) may be required, but is not sufficient, for PDGF-modulated DNA synthesis. 相似文献
14.
Cvetkovic-Lopes V Eggermann E Uschakov A Grivel J Bayer L Jones BE Serafin M Mühlethaler M 《PloS one》2010,5(12):e15673
In a previous study we proposed that the depolarized state of the wake-promoting hypocretin/orexin (hcrt/orx) neurons was independent of synaptic inputs as it persisted in tetrodotoxin and low calcium/high magnesium solutions. Here we show first that these cells are hyperpolarized when external sodium is lowered, suggesting that non-selective cation channels (NSCCs) could be involved. As canonical transient receptor channels (TRPCs) are known to form NSCCs, we looked for TRPCs subunits using single-cell RT-PCR and found that TRPC6 mRNA was detectable in a small minority, TRPC1, TRPC3 and TRPC7 in a majority and TRPC4 and 5 in the vast majority (~90%) of hcrt/orx neurons. Using intracellular applications of TRPC antibodies against subunits known to form NSCCs, we then found that only TRPC5 antibodies elicited an outward current, together with hyperpolarization and inhibition of the cells. These effects were blocked by co-application of a TRPC5 antigen peptide. Voltage-clamp ramps in the presence or absence of TRPC5 antibodies indicated the presence of a current with a reversal potential close to -15 mV. Application of the non-selective TRPC channel blocker, flufenamic acid, had a similar effect, which could be occluded in cells pre-loaded with TRPC5 antibodies. Finally, using the same TRPC5 antibodies we found that most hcrt/orx cells show immunostaining for the TRPC5 subunit. These results suggest that hcrt/orx neurons are endowed with a constitutively active non-selective cation current which depends on TRPC channels containing the TRPC5 subunit and which is responsible for the depolarized and active state of these cells. 相似文献
15.
Administration of clofibrate in rat results in down-regulation of several liver proteins and a vast induction of peroxisomal proteins. One protein was identified as BiP/GRP78 using antibodies and cDNA cloning. The level of mRNA was reduced by the drug. 相似文献
16.
Repair of a minimal DNA double-strand break by NHEJ requires DNA-PKcs and is controlled by the ATM/ATR checkpoint 总被引:1,自引:0,他引:1
Mammalian cells primarily rejoin DNA double-strand breaks (DSBs) by the non-homologous end-joining (NHEJ) pathway. The joining of the broken DNA ends appears directly without template and accuracy is ensured by the NHEJ factors that are under ATM/ATR regulated checkpoint control. In the current study we report the engineering of a mono-specific DNA damaging agent. This was used to study the molecular requirements for the repair of the least complex DSB in vivo. Single-chain PvuII restriction enzymes fused to protein delivery sequences transduce cells efficiently and induce blunt end DSBs in vivo. We demonstrate that beside XRCC4/LigaseIV and KU, the DNA-PK catalytic subunit (DNA-PKcs) is also essential for the joining of this low complex DSB in vivo. The appearance of blunt end 3′-hydroxyl and 5′-phosphate DNA DSBs induces a significantly higher frequency of anaphase bridges in cells that do not contain functional DNA-PKcs, suggesting an absolute requirement for DNA-PKcs in the control of chromosomal stability during end joining. Moreover, these minimal blunt end DSBs are sufficient to induce a p53 and ATM/ATR checkpoint function. 相似文献
17.
ATP-sensitive potassium channels of the inner mitochondrial membrane (mtKATP) are blocked by ATP. They are suggested to be involved in protective mechanisms such as ischemic preconditioning (IPC). Here we identify this channel type for the first time in a human cell line (Jurkat cells). Vesicles of the inner mitochondrial membrane (mitoplasts) were prepared by hypoosmotic shock. Single-channel currents were measured by means of the patch-clamp technique. We identified an outward-rectifying channel with a slope conductance of 15 and 82 pS at negative and positive potentials, respectively. The block by 5-hydroxydecanoic acid and inhibition by ATP characterize this channel as the mtKATP channel. ATP also increased the frequency of events within the burst. This effect was modulated by the Ca2+-bath concentration. We also show that the human mtKATP channel is a direct target for nitric oxide that blocked the channel activity. Although the molecular structure of this channel type is still unknown, its characterization as an outward-rectifying channel and modulation by calcium ions and nitric oxide may help to elucidate its functional significance, which possibly implicates a role in cell survival after IPC. 相似文献
18.
19.
Toshisuke Iwasaki Kazuko Yamaguchi-Shinozaki Kazuo Shinozaki 《Molecular & general genetics : MGG》1995,247(4):391-398
The effect of the ATP-dependent exonuclease AddAB complex on the structural stability of plasmid pGP1 inBacillus subtilis was studied. Using deletion mutagenesis and gene amplification techniques,B. subtilis strains were constructed either lacking or overproducing the AddAB complex, a key enzyme in homologous recombination. The deletion mutant possessed no residual ATP-dependent nuclease activity; in contrast, the nuclease activity was up to 30 times higher in lysates of strains carrying multiple copies of theaddAB genes in the chromosome. Southern blot analyses of these strains indicated that a linear relationship exists between the number of chromosomal gene copies and the level of AddAB activity. The structural stability of pGP1 was analyzed in the AddAB-deficient and over-producing backgrounds. Frequencies of deletion formation in the plasmid, as monitored by the expression of the pGP1-encodedpenP-lacZ fusion on media containing X-gal, were shown to be increased at least 25-fold in theaddAB knock-out mutant, whereas the stability of pGP1 was improved up to 15-fold in strains verproducing the AddAB enzyme. A possible explanation for these findings is that interactions between AddAB and plasmid molecules prevent the formation of secondary structures that constitute potential deletion target sites, and thereby enhance the structural stability of plasmids. 相似文献
20.
Phosphorylation of tau proteins to a state like that in Alzheimer's brain is catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids 总被引:21,自引:0,他引:21
Calcium/calmodulin (CaM)-dependent protein kinases isolated from bovine and rat brains phosphorylate the microtubule-associated tau protein in the mode that shifts the mobility of tau in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (mode I). This mode of tau phosphorylation is the one that occurs abnormally in Alzheimer's lesions. Purified tau protein in solution can be phosphorylated by the Ca2+/CaM kinases maximally to about 50% of the total tau protein. Incorporation of one phosphate group per mol of tau is sufficient to shift the protein to a slower migrating electrophoretic band. Additional phosphate incorporation into the shifted tau proteins can occur depending on protein kinase concentration. In the presence of phosphatidylserine, tau proteins were phosphorylated to an extent of 100% at a tau: phosphatidylserine ratio of 20. Phosphatidylethanolamine also stimulated tau phosphorylation by Ca2+/CaM kinase and phosphatidylinositol was found to be a potent inhibitor of tau protein phosphorylation. The direct observation that tau proteins interact with phospholipids such as phosphatidylethanolamine and phosphatidylinositol, resulting in a smearing of the protein band on sodium dodecyl sulfate-gel electrophoresis, supports the possibility that tau protein may interact with phospholipid membranes in vivo and that tau protein phosphorylation could be modulated by the phospholipid composition of the membranes with which tau interacts. 相似文献