首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major role of 'model plants' is to provide knowledge and technologies obtained in related systems to researchers studying crop plants. Lotus japonicus was chosen as a model system first for legume genetics and then for legume genomics. A large number of L. japonicus mutants that have alterations in legume-specific phenomena have been generated and phenotypically characterized, and genomics has drastically accelerated the molecular characterization of these mutants. Substantial resources of information and experimental materials, including genomic and cDNA sequences, corresponding DNA libraries and high-density linkage maps demonstrate that L. japonicus is an excellent model system. Transfer of knowledge from L. japonicus to other legumes, especially crop legumes, is a matter for urgent consideration.  相似文献   

2.
3.
Lotus japonicus is a model plant for the legume family. To facilitate map-based cloning approaches and genome analysis, we performed an extensive characterization of the chromosome complement of the species. A detailed karyotype of L. japonicus Gifu was built and plasmid and BAC clones, corresponding to genetically mapped markers (see the accompanying article by Sandal et al. 2002, this issue), were used for FISH to correlate genetic and chromosomal maps. Hybridization of DNA clones from 32 different genomic regions enabled the assignment of linkage groups to chromosomes, the comparison between genetic and physical distances throughout the genome, and the partial characterization of different repetitive sequences, including telomeric and centromeric repeats. Additional analysis of L. filicaulis and its F(1) hybrid with L. japonicus demonstrated the occurrence of inversions between these closely related species, suggesting that these chromosome rearrangements are early events in speciation of this group.  相似文献   

4.
5.
Legumes are of immense importance to humanity and a key to sustainable agriculture. Two model species, Lotus japonicus and Medicago truncatula, are the focus of genome sequencing and functional genomics programmes, but most researchers focus exclusively on one or the other. In spite of this, legume researchers now have a unique opportunity to integrate work on these and other legume species, including soybean, common bean and pea to create a platform for comparative genomics second to none of any other plant family. The question is: do we have the scientific fortitude and political will to achieve this?  相似文献   

6.
Root, root hair, and symbiotic mutants of the model legume Lotus japonicus   总被引:3,自引:0,他引:3  
To gain an overview of plant factors controlling nodule number and organogenesis, an extensive screening using model legume Lotus japonicus was carried out. This screening involved 40,000 M2 seeds, and 32 stable mutant lines were isolated. From these, 16 mutant lines maintaining the phenotypic variation were selected and genetically analyzed. With respect to nodule number, four loci were identified, Ljsym77, Ljsym78, slippery root (slp), and radial organization1 (rdo1). The former two mutants have an increased number of nodules, while the latter two have a decreased number. Ljsym78-1 and Ljsym78-2 are hypernodulating mutants with a branched root system and were found to be allelic to Ljsym16. The phenotype of the Ljsym77 mutant was highly pleiotropic, being deficient in light and gravity responses. The slp mutant was isolated as a low-nodulating mutant lacking root hairs. Concerning nodule organogenesis, nine symbiotic loci were identified, including the two loci alb1 and fen1. Mutants affecting the developmental process of nodule organogenesis were placed in three phenotypic categories: Nod- (Ljsym70 to Ljsym73), Hist- (alb1-1, alb1-2, and Ljsym79), and Fix- (fen1, Ljsym75, and Ljsym81).  相似文献   

7.
Holligan D  Zhang X  Jiang N  Pritham EJ  Wessler SR 《Genetics》2006,174(4):2215-2228
The largest component of plant and animal genomes characterized to date is transposable elements (TEs). The availability of a significant amount of Lotus japonicus genome sequence has permitted for the first time a comprehensive study of the TE landscape in a legume species. Here we report the results of a combined computer-assisted and experimental analysis of the TEs in the 32.4 Mb of finished TAC clones. While computer-assisted analysis facilitated a determination of TE abundance and diversity, the availability of complete TAC sequences permitted identification of full-length TEs, which facilitated the design of tools for genomewide experimental analysis. In addition to containing all TE types found in previously characterized plant genomes, the TE component of L. japonicus contained several surprises. First, it is the second species (after Oryza sativa) found to be rich in Pack-MULEs, with >1000 elements that have captured and amplified gene fragments. In addition, we have identified what appears to be a legume-specific MULE family that was previously identified only in fungal species. Finally, the L. japonicus genome contains many hundreds, perhaps thousands of Sireviruses: Ty1/copia-like elements with an extra ORF. Significantly, several of the L. japonicus Sireviruses have recently amplified and may still be actively transposing.  相似文献   

8.
9.
Nitrate assimilation in the forage legume Lotus japonicus L.   总被引:4,自引:0,他引:4  
Nitrate assimilation in the model legume, Lotus japonicus, has been investigated using a variety of approaches. A gene encoding a nitrate-inducible nitrate reductase (NR) has been cloned and appears to be the only NR gene present in the genome. Most of the nitrate reductase activity (NRA) is found in the roots and the plant assimilates the bulk of its nitrogen in that tissue. We calculate that the observed rates of nitrate reduction are compatible with the growth requirement for reduced nitrogen. The NR mRNA, NRA and the nitrate content do not show a strong diurnal rhythm in the roots and assimilation continues during the dark period although export of assimilated N to the shoot is lower during this time. In shoots, the previous low NR activity may be further inactivated during the dark either by a phosphorylation mechanism or due to reduced nitrate flux coincident with a decreased delivery through the transpiration stream. From nitrate-sufficient conditions, the removal of nitrate from the external medium causes a rapid drop in hydraulic conductivity and a decline in nitrate and reduced-N export. Root nitrate content, NR and nitrate transporter (NRT2) mRNA decline over a period of 2 days to barely detectable levels. On resupply, a coordinated increase of NR and NRT2 mRNA, and NRA is seen within hours.  相似文献   

10.
Complete structure of the chloroplast genome of a legume, Lotus japonicus.   总被引:4,自引:0,他引:4  
The nucleotide sequence of the entire chloroplast genome (150,519 bp) of a legume, Lotus japonicus, has been determined. The circular double-stranded DNA contains a pair of inverted repeats of 25,156 bp which are separated by a small and a large single copy region of 18,271 bp and 81,936 bp, respectively. A total of 84 predicted protein-coding genes including 7 genes duplicated in the inverted repeat regions, 4 ribosomal RNA genes and 37 tRNA genes (30 gene species) representing 20 amino acids species were assigned on the genome based on similarity to genes previously identified in other chloroplasts. All the predicted genes were conserved among dicot plants except that rpl22, a gene encoding chloroplast ribosomal protein CL22, was missing in L. japonicus. Inversion of a 51-kb segment spanning rbcL to rpsl6 (positions 5161-56,176) in the large single copy region was observed in the chloroplast genome of L. japonicus. The sequence data and gene information are available on our World Wide Web database at http://www.kazusa.or.jp/en/plant/database.html.  相似文献   

11.
12.
Two related families of ammonium transporters have been identified and partially characterised in plants in the past; the AMT1 and AMT2 families. Most attention has focused on the larger of the two families, the AMT1 family, which contains members that are likely to fulfil different, possibly overlapping physiological roles in plants, including uptake of ammonium from the soil. The possible physiological functions of AMT2 proteins are less clear. Lack of data on cellular and tissue location of gene expression, and the intracellular location of proteins limit our understanding of the physiological role of all AMT proteins. We have cloned the first AMT2 family member from a legume, LjAMT2;1 of Lotus japonicus, and demonstrated that it functions as an ammonium transporter by complementing a yeast mutant defective in ammonium uptake. However, like AtAMT2 from Arabidopsis, and unlike AMT1 transporters from several plant species, LjAMT2;1 was unable to transport methylammonium. The LjAMT2;1 gene was found to be expressed constitutively throughout Lotus plants. In situ RNA hybridisation revealed LjAMT2;1 expression in all major tissues of nodules. Transient expression of LjAMT2;1-GFP fusion protein in plant cells indicated that the transporter is located on the plasma membrane. In view of the fact that nodules derive ammonium internally, rather than from the soil, the results implicate LjAMT2;1 in the recovery of ammonium lost from nodule cells by efflux. A similar role may be fulfilled in other organs, especially leaves, which liberate ammonium during normal metabolism.  相似文献   

13.
For comprehensive analysis of genes expressed in a model legume, Lotus japonicus, a total of 22,983 5' end expressed sequence tags (ESTs) were accumulated from normalized and size-selected cDNA libraries constructed from young (2 weeks old) plants. The EST sequences were clustered into 7137 non-redundant groups. Similarity search against public non-redundant protein database indicated that 3302 groups showed similarity to genes of known function, 1143 groups to hypothetical genes, and 2692 were novel sequences. Homologues of 5 nodule-specific genes which have been reported in other legume species were contained in the collected ESTs, suggesting that the EST source generated in this study will become a useful tool for identification of genes related to legume-specific biological processes. The sequence data of individual ESTs are available at the web site: http://www.kazusa.or.jp/en/plant/lotus/EST/.  相似文献   

14.
To evaluate the prospects for transposon mutagenesis in the autogamous diploid legume Lotus japonicus, the behaviour of the maize transposable element Ac was analysed in the progeny of 38 independent transgenic plants. The conditions for monitoring donor site excision using histochemical localization of -glucuronidase activity or the alternative spectinomycin resistance assay were established, and used to follow Ac mobility through two generations. Somatic excision was monitored as variegated cotyledons in the T2 generation and germinal excision events were scored in segregating T3 families as complete -glucuronidase-mediated staining of cotyledons or as a fully green spectinomycin-resistant phenotype. Using these assays an average germinal excision frequency of 12% was estimated in the T3 offspring from variegated plants. The fidelity of the excision assays was ascertained by comparing the frequency of germinal excision to the frequency of Ac reinsertion at new positions of the genome. Transposition of Ac in 42% of the plants and detection of the characteristic Ac insertion/excision footprints suggests that insertion mutagenesis with the autonomous maize Activator element is feasible in Lotus japonicus. Parameters influencing Ac behaviour, such as dosage, position effects and modification of the element itself, were also investigated comparing homozygous and hemizygous plants from the same family and by analysing different transformants.Abbreviations W white - V variegated - FG fully green - FB fully blue - aadA spectinomycin adenyltransferase  相似文献   

15.
We used a split-root system to determine the timing for induction of the autoregulation of nodulation (AUT) in Lotus japonicus (Regel) Larsen after inoculation with Mesorhizobium loti. The signal took at least five days for full induction of AUT and inhibition of infection thread formation. Strain ML108 (able to nodulate but unable to fix nitrogen) induced full AUT, but ML101 (unable to nodulate or to fix nitrogen) did not induce autoregulation. These results indicate that Nod factor-producing strains induce AUT, but that the nitrogen fixed by rhizobia and supplied to the plant as ammonia does not elicit the AUT in L. japonicus.  相似文献   

16.
17.
To understand the molecular mechanisms intrinsic to reproductive organ development a cDNA microarray, fabricated from flower bud cDNA clones, was used to isolate genes, which are specifically expressed during the development of the anther and pistil in Lotus japonicus. Cluster analysis of the microarray data revealed 21 and 111 independent cDNA groups, which were specifically expressed in immature and mature anthers, respectively. RT-PCR was performed to provide a direct assessment of the accuracy and reproducibility of our approach. Confirmation of our results suggests that cDNA microarray technology is an effective tool for identification of novel reproductive organ-specific genes.  相似文献   

18.
Pollen germination and pollen tube elongation are important for pollination and fertilization in higher plants. To date, several pollen-specific genes have been isolated and characterized. However, there is little information about the precise spatial and temporal expression pattern of pollen-specific genes in higher plants. In our previous study, we identified 132 anther-specific genes in the model legume Lotus japonicus by using cDNA microarray analysis, though their precise expression sites in the anther tissues were not determined. In this study, by using in situ hybridization experiments, we determined the spatial and temporal expression sites of 46 anther-specific genes (ca. 35%), which were derived from two groups, cluster I-a and cluster II-a, according to flower developmental stages. In the case of the genes grouped into cluster I-a, thirteen clones were characterized. The specific hybridized signals were varied among the clones, and were observed in tapetum cells, microspores, and anther walls at the early developmental stage of anther tissues. In the case of the genes classified into cluster II-a, we used thirty three different cDNA clones encoding primary and secondary metabolism-related proteins, cell wall reconstruction-related proteins, actin reorganization-related proteins, and sugar transport-related proteins, etc., as a probe. Interestingly, all genes in these thirty three clones examined were specifically expressed in the bicellular pollen grains, though the signal intensity was varied among clones. From the data of the cluster II-a genes, the mRNAs related to pollen germination and pollen tube elongation were specifically transcribed and preserved in mature pollen grains.  相似文献   

19.
The molecular analysis of plant genes involved in nodulationhas been slowed by the inability to produce high numbers oftransgenic legume lines. The high efficiency gene transfer andplant regeneration systems of the model legume Lotus japonicusis described. A collection of wild-type A. rhizogenes strainswas tested for infectivity and the most virulent strains, 9402and AR10, were selected for further use. Growth conditions forplantlets, induction of hairy roots and nodulation of compositeplants were optimized for large-scale screening in Petri dishes.A cluster of 3–10 nodules was regularly formed on transgenichairy roots 7–12 d after inoculation with the effectiveRhizobium loti strain NZP2235. There were no apparent morphologicaldifferences between nodulation of hairy and wildtype roots.To test the applicability of the hairy root system for the trappingof symbiotic genes, transformation experiments with binary vectorspossessing a ß-glucuronidase (gus, uidA) or a luciferase(luc) reporter driven by a cauliflower mosaic virus (CaMV) 35Spromoter were performed. The frequency of cotransfer of a binaryT-DNA with a root-inducing (Ri) T-DNA was 70%. Positive expressionsuggests that gus and luc trap vectors can be used for genetagging in L. japonicus. To open the possibility of searchingfor mutant phenotypes, a regeneration system has been developedenabling the regeneration of large numbers of transgenic plantsfrom hairy root cultures in about 5–6 months. At the sametime, the A. tumefaciens hypocotyl transformation regenerationin L. japonicus has been improved. This new version providesfertile transgenic plants in about 4 months. Key words: Agrobacterium, luciferase, nodulation, Rhizobium, symbiosis  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号