首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PDZ domains are protein-protein interaction modules that are crucial for the assembly of structural and signaling complexes. PDZ domains specifically bind short carboxyl-terminal peptides and occasionally internal sequences that structurally resemble peptide termini. Previously, using yeast two-hybrid methodology, we studied the interaction of two PDZ domains present in the large submembranous protein tyrosine phosphatase PTP-BL with' the C-terminal half of the LIM domain-containing protein RIL. Deletion of the extreme RIL C-terminus did not eliminate binding, suggesting the presence of a PDZ binding site within the RIL LIM moiety. We have now performed experiments in mammalian cell lysates and found that the RIL C-terminus proper, but not the RIL LIM domain, can interact with PTP-BL, albeit very weakly. However, this interaction with PTP-BL PDZ domains is greatly enhanced when the combined RIL LIM domain and C-terminus is used, pointing to synergistic effects. NMR titration experiments and site-directed mutagenesis indicate that this result is not dependent on specific interactions that require surface exposed residues on the RIL LIM domain, suggesting a stabilizing role in the association with PTP-BL.  相似文献   

2.
The small adaptor protein RIL consists of two segments, the C-terminal LIM and the N-terminal PDZ domain, which mediate multiple protein-protein interactions. The RIL LIM domain can interact with PDZ domains in the protein tyrosine phosphatase PTP-BL and with the PDZ domain of RIL itself. Here, we describe and characterise the interaction of the RIL PDZ domain with the zyxin-related protein TRIP6, a protein containing three C-terminal LIM domains. The second LIM domain in TRIP6 is sufficient for a strong interaction with RIL. A weaker interaction with the third LIM domain in TRIP6, including the proper C-terminus, is also evident. TRIP6 also interacts with the second out of five PDZ motifs in PTP-BL. For this interaction to occur both the third LIM domain and the proper C-terminus are necessary. RNA expression analysis revealed overlapping patterns of expression for TRIP6, RIL and PTP-BL, most notably in tissues of epithelial origin. Furthermore, in transfected epithelial cells TRIP6 can be co-precipitated with RIL and PTP-BL PDZ polypeptides, and a co-localisation of TRIP6 and RIL with Factin structures is evident. Taken together, PTP-BL, RIL and TRIP6 may function as components of multi-protein complexes at actin-based sub-cellular structures.  相似文献   

3.
The specificity of protein–protein interactions in cellular signaling cascades is dependent on the sequence and intramolecular location of distinct amino acid motifs. We used the two-hybrid interaction trap to identify proteins that can associate with the PDZ motif-rich segment in the protein tyrosine phosphatase PTP-BL. A specific interaction was found with the Lin-11, Isl-1, Mec-3 (LIM) domain containing protein RIL. More detailed analysis demonstrated that the binding specificity resides in the second and fourth PDZ motif of PTP-BL and the LIM domain in RIL. Immunohistochemistry on various mouse tissues revealed a submembranous colocalization of PTP-BL and RIL in epithelial cells. Remarkably, there is also an N-terminal PDZ motif in RIL itself that can bind to the RIL-LIM domain. We demonstrate here that the RIL-LIM domain can be phosphorylated on tyrosine in vitro and in vivo and can be dephosphorylated in vitro by the PTPase domain of PTP-BL. Our data point to the presence of a double PDZ-binding interface on the RIL-LIM domain and suggest tyrosine phosphorylation as a regulatory mechanism for LIM-PDZ associations in the assembly of multiprotein complexes. These findings are in line with an important role of PDZ-mediated interactions in the shaping and organization of submembranous microenvironments of polarized cells.  相似文献   

4.
PTP-BL is a large phosphatase that is implicated in cellular processes as diverse as cytokinesis, actin-cytoskeletal rearrangement, and apoptosis. Five PDZ domains mediate its cellular role by binding to the C termini of target proteins, forming multiprotein complexes. The second PDZ domain (PDZ2) binds to the C termini of the tumor suppressor protein APC and the LIM domain-containing protein RIL; however, in one splice variant, PDZ2as, a 5 residue insertion abrogates this binding. The insert causes distinct structural and dynamical changes in the alternatively spliced PDZ2: enlarging the L1 loop between beta2 and beta3, both lengthening and changing the orientation of the alpha2 helix, giving the base of the binding pocket less flexibility to accommodate ligands, and destabilizing the entire domain. These changes render the binding pocket incapable of binding C termini, possibly having implications in the functional role of PTP-BL.  相似文献   

5.
The PDZ domains of the protein tyrosine phosphatase PTP-BL mediate interactions by binding to specific amino acid sequences in target proteins. The solution structure of the second PDZ domain of PTP-BL, PDZ2, displays a compact fold with six β strands and two α-helices. A unique feature of this domain compared to the canonical PDZ fold is an extended flexible loop at the base of the binding pocket, termed L1, that folds back onto the protein backbone, a feature that is shared by both the murine and human orthologues. The structure of PDZ2 differs significantly from the orthologous human structure. A comparison of structural quality indicators clearly demonstrates that the PDZ2 ensemble is statistically more reasonable than that of the human orthologue. The analysis of 15N relaxation data for PDZ2 shows a normal pattern, with more rigid secondary structures and more flexible loop structures. Close to the binding pocket, Leu85 and Thr88 display greater mobility when compared to surrounding residues. Peptide binding studies demonstrated a lack of interaction between murine PDZ2 and the C terminus of the murine Fas/CD95 receptor, suggesting that the Fas/CD95 receptor is not an in vivo target for PDZ2. In addition, PDZ2 specifically binds the C termini of both human Fas/CD95 receptor and the RIL protein, despite RIL containing a non-canonical PDZ-interacting sequence of E-x-V. A model of PDZ2 with the RIL peptide reveals that the PDZ2 binding pocket is able to accommodate the bulkier side-chain of glutamic acid while maintaining crucial protein to peptide hydrogen bond interactions.  相似文献   

6.
PDZ domains are protein-protein interaction modules that are crucial for the assembly of structural and signalling complexes. They specifically bind to short C-terminal peptides and occasionally to internal sequences that structurally resemble such peptide termini. The binding of PDZ domains is dominated by the residues at the P(0) and P(-2) position within these C-terminal targets, but other residues are also important in determining specificity. In this study, we analysed the binding specificity of the third PDZ domain of protein tyrosine phosphatase BAS-like (PTP-BL) using a C-terminal combinatorial peptide phage library. Binding of PDZ3 to C-termini is preferentially governed by two cysteine residues at the P(-1) and P(-4) position and a valine residue at the P(0) position. Interestingly, we found that this binding is lost upon addition of the reducing agent dithiothrietol, indicating that the interaction is disulfide-bridge-dependent. Site-directed mutagenesis of the single cysteine residue in PDZ3 revealed that this bridge formation does not occur intermolecularly, between peptide and PDZ3 domain, but rather is intramolecular. These data point to a preference of PTP-BL PDZ3 for cyclic C-terminal targets, which may suggest a redox state-sensing role at the cell cortex.  相似文献   

7.
PDZ (acronym of the synapse-associated protein PSD-95/SAP90, the septate junction protein Discs-large, and the tight junction protein ZO-1) domains are abundant small globular protein interaction domains that mainly recognize the carboxyl termini of their target proteins. Detailed knowledge on PDZ domain binding specificity is a prerequisite for understanding the interaction networks they establish. We determined the binding preference of the five PDZ domains in the protein tyrosine phosphatase PTP-BL by screening a random C-terminal peptide lambda phage display library. Interestingly, the potential of PDZ2 to interact with class III-type ligands was found to be modulated by the presence of PDZ1. Structural studies revealed a direct and specific interaction of PDZ1 with a surface on PDZ2 that is opposite the peptide binding groove. Long-range allosteric effects that cause structural changes in the PDZ2 peptide binding groove thus explain the altered PDZ2 binding preference. Our results experimentally corroborate that the molecular embedding of PDZ domains is an important determinant of their ligand binding specificity.  相似文献   

8.
Protein tyrosine phosphatase-basophil like (PTP-BL) represents a large multi domain non-transmembrane scaffolding protein that contains five PDZ domains. Here we report the backbone assignments of the PDZ2/PDZ3 tandem domain of PTP-BL. These assignments now provide a basis for the detailed structural investigation of the interaction between the PDZ domains 2 and 3 of PTP-BL. It will lead to a better understanding of the proposed scaffolding function of this tandem domain in multi-protein complexes assembled by PTB-BL. Christian P. Fetzer, Janelle Sauvageau and Gerd Kock contributed equally to this work.  相似文献   

9.
Protein tyrosine phosphatase basophil-like (PTP-BL), also known as PTPN13, represents a large multi domain non-transmembrane scaffolding protein that contains five PDZ domains. Here we report the complete resonance assignments of the extended PDZ3 domain of PTP-BL. These assignments provide a basis for the detailed structural investigation of the interaction between the PDZ domains of PTP-BL as well as of their interaction with ligands. It will also lead to a better understanding of the proposed scaffolding function of these domains in multi-protein complexes assembled by PTB-BL.  相似文献   

10.
Gross C  Heumann R  Erdmann KS 《FEBS letters》2001,496(2-3):101-104
Protein tyrosine phosphatase-basophil like (PTP-BL) is a large non-transmembrane protein tyrosine phosphatase implicated in the modulation of the cytoskeleton. Here we describe a novel interaction of PTP-BL with the protein kinase C-related kinase 2 (PRK2), a serine/threonine kinase regulated by the G-protein rho. This interaction is mediated by the PSD-95, Drosophila discs large, zonula occludens (PDZ)3 domain of PTP-BL and the extreme C-terminus of PRK2 as shown by yeast two-hybrid assays and coimmunoprecipitation experiments from transfected HeLa cells. In particular, we demonstrate that a conserved C-terminal cysteine of PRK2 is indispensable for the interaction with PTP-BL. In HeLa cells we demonstrate colocalization of both proteins in lamellipodia like structures. Interaction of PTP-BL with the rho effector kinase PRK2 gives further evidence for a possible function of PTP-BL in the regulation of the actin cytoskeleton.  相似文献   

11.
PDZ domains: folding and binding   总被引:3,自引:0,他引:3  
Jemth P  Gianni S 《Biochemistry》2007,46(30):8701-8708
The PDZ domain is one of the most common protein-protein interaction domains in humans, and it is found in all kingdoms of life. We will review recent progress in the understanding of biophysical aspects of PDZ domains with emphasis on the folding and binding reactions. Finally, we discuss an intriguing correlation between stability and binding of peptide for PDZ2 from PTP-BL.  相似文献   

12.
PDZ and LIM domains are modular protein interaction motifs present in proteins with diverse functions. Enigma is representative of a family of proteins composed of a series of conserved PDZ and LIM domains. The LIM domains of Enigma and its most related family member, Enigma homology protein, bind to protein kinases, whereas the PDZ domains of Enigma and family member actin-associated LIM protein bind to actin filaments. Enigma localizes to actin filaments in fibroblasts via its PDZ domain, and actin-associated LIM protein binds to and colocalizes with the actin-binding protein alpha-actinin-2 at Z lines in skeletal muscle. We show that Enigma is present at the Z line in skeletal muscle and that the PDZ domain of Enigma binds to a skeletal muscle target, the actin-binding protein tropomyosin (skeletal beta-TM). The interaction between Enigma and skeletal beta-TM was specific for the PDZ domain of Enigma, was abolished by mutations in the PDZ domain, and required the PDZ-binding consensus sequence (Thr-Ser-Leu) at the extreme carboxyl terminus of skeletal beta-TM. Enigma interacted with isoforms of tropomyosin expressed in C2C12 myotubes and formed an immunoprecipitable complex with skeletal beta-TM in transfected cells. The association of Enigma with skeletal beta-TM suggests a role for Enigma as an adapter protein that directs LIM-binding proteins to actin filaments of muscle cells.  相似文献   

13.
Protein-protein interactions play an important role in the specificity of cellular signaling cascades. By using the yeast two-hybrid system, a specific interaction was identified between the second PDZ domain of the cytosolic protein tyrosine phosphatase hPTP1E and a novel protein, which was termed ZRP-1 to indicate its sequence similarity to the Zyxin protein family. The mRNA encoding this protein is distributed widely in human tissues and contains an open reading frame of 1428 base pairs, predicting a polypeptide of 476 amino acid residues. The deduced protein displays a proline-rich amino-terminal region and three double zinc finger LIM domains at its carboxyl terminus. The specific interaction of this novel protein with the second PDZ domain of hPTP1E was demonstrated both in vitro, using bacterially expressed proteins, and in vivo, by co-immunoprecipitation studies. Deletion analysis indicated that an intact carboxyl terminus is required for its interaction with the second PDZ domain of hPTP1E in the yeast two-hybrid system and suggested that other sequences, including the LIM domains, also participate in the interaction. The genomic organization of the ZRP-1 coding sequence is identical to that of the lipoma preferred partner gene, another Zyxin-related protein, suggesting that the two genes have evolved from a recent gene duplication event.  相似文献   

14.
The protein tyrosine phosphatase PTP-Basophil (PTP-Bas) and its mouse homologue, PTP-Basophil-like (PTP-BL), are high molecular mass protein phosphatases consisting of a number of diverse protein-protein interaction modules. Several splicing variants of these phosphatases are known to exist thus demonstrating the complexity of these molecules. PTP-Bas/BL serves as a central scaffolding protein facilitating the assembly of a multiplicity of different proteins mainly via five different PDZ domains. Many of these interacting proteins are implicated in the regulation of the actin cytoskeleton. However, some proteins demonstrate a nuclear function of this protein tyrosine phosphatase. PTP-Bas is involved in the regulation of cell surface expression of the cell death receptor, Fas. Moreover, it is a negative regulator of ephrinB phosphorylation, a receptor playing an important role during development. The phosphorylation status of other proteins such as RIL, IkappaBalpha and beta-catenin can also be regulated by this phosphatase. Finally, PTP-BL has been shown to be involved in the regulation of cytokinesis, the last step in cell division. Although the precise molecular function of PTP-Bas/BL is still elusive, current data suggest clearly that PTP-Bas/BL belongs to the family of PDZ domain containing proteins involved in the regulation of the cytoskeleton and of intracellular vesicular transport processes.  相似文献   

15.
PDZ motifs are protein–protein interaction domains that often bind to COOH-terminal peptide sequences. The two PDZ proteins characterized in skeletal muscle, syntrophin and neuronal nitric oxide synthase, occur in the dystrophin complex, suggesting a role for PDZ proteins in muscular dystrophy. Here, we identify actinin-associated LIM protein (ALP), a novel protein in skeletal muscle that contains an NH2-terminal PDZ domain and a COOH-terminal LIM motif. ALP is expressed at high levels only in differentiated skeletal muscle, while an alternatively spliced form occurs at low levels in the heart. ALP is not a component of the dystrophin complex, but occurs in association with α-actinin-2 at the Z lines of myofibers. Biochemical and yeast two-hybrid analyses demonstrate that the PDZ domain of ALP binds to the spectrin-like motifs of α-actinin-2, defining a new mode for PDZ domain interactions. Fine genetic mapping studies demonstrate that ALP occurs on chromosome 4q35, near the heterochromatic locus that is mutated in fascioscapulohumeral muscular dystrophy.  相似文献   

16.
PDZ domains are protein-protein interaction modules that recognize specific C-terminal sequences to assemble protein complexes in multicellular organisms. By scanning billions of random peptides, we accurately map binding specificity for approximately half of the over 330 PDZ domains in the human and Caenorhabditis elegans proteomes. The domains recognize features of the last seven ligand positions, and we find 16 distinct specificity classes conserved from worm to human, significantly extending the canonical two-class system based on position -2. Thus, most PDZ domains are not promiscuous, but rather are fine-tuned for specific interactions. Specificity profiling of 91 point mutants of a model PDZ domain reveals that the binding site is highly robust, as all mutants were able to recognize C-terminal peptides. However, many mutations altered specificity for ligand positions both close and far from the mutated position, suggesting that binding specificity can evolve rapidly under mutational pressure. Our specificity map enables the prediction and prioritization of natural protein interactions, which can be used to guide PDZ domain cell biology experiments. Using this approach, we predicted and validated several viral ligands for the PDZ domains of the SCRIB polarity protein. These findings indicate that many viruses produce PDZ ligands that disrupt host protein complexes for their own benefit, and that highly pathogenic strains target PDZ domains involved in cell polarity and growth.  相似文献   

17.
The very C-terminus of c-Src is a ligand for PDZ domains. In a screen for PDZ domains that interact with c-Src, we identified one of the PDZ domains of the Ligand-of-Numb protein X1 (LNX1), a multiple PDZ domain scaffold and RING type E3 ubiquitin ligase. We demonstrate that the interaction of c-Src with LNX1 depends on the C-terminal PDZ ligand of c-Src. Furthermore, we show that c-Src phosphorylates LNX1. Moreover, c-Src itself is ubiquitinated by LNX1, suggesting an interdependent regulation of c-Src and LNX1.  相似文献   

18.
Weinman EJ  Wang Y  Wang F  Greer C  Steplock D  Shenolikar S 《Biochemistry》2003,42(43):12662-12668
NHERF-1, a protein adapter containing two tandem PDZ domains, was first identified as an essential cofactor required for the phosphorylation and downregulation of NHE3 activity in response to elevated intracellular cAMP. NHERF-1 contains multiple protein interaction domains, but the mechanism by which it binds NHE3 remains unknown. Yeast two-hybrid analyses demonstrated that the C-terminal sequence, STHM, of NHE3 constitutes a PDZ motif critical for its association with NHERF-1. In this assay, NHE3 bound both PDZ-I and PDZ-II when presented as isolated domains, but mutations of the individual PDZ domains in the full-length NHERF-1 suggested a significant preference of NHE3 for the PDZ-II domain. To investigate NHERF-1/NHE3 association in cells, NHERF-1 complexes were isolated from PS120 cells expressing hexahistidine-tagged NHERF-1 and NHE3 using nickel-NTA-agarose. In these experiments, mutating the C-terminal PDZ motif still allowed NHE3 binding to NHERF-1, suggesting the presence of additional mechanisms or components that stabilized a cellular NHE3/NHERF-1 complex. Transport assays in PS120 cells, however, showed that the C-terminal PDZ motif in NHE3 and a functional PDZ-II domain in NHERF-1 were required for maximal inhibition of sodium-hydrogen exchange in response to forskolin and 8-Br-cAMP. Together, the data suggested that the PDZ interaction between the NHE3 C-terminus and a NHERF-1 PDZ domain enhanced the regulation of sodium-hydrogen exchange by cAMP-elevating hormones.  相似文献   

19.
We have cloned and characterized a novel striated muscle-restricted protein (Cypher) that has two mRNA splice variants, designated Cypher1 and Cypher2. Both proteins contain an amino-terminal PDZ domain. Cypher1, but not Cypher2, contains three carboxyl-terminal LIM domains and an amino acid repeat sequence that exhibits homology to a repeat sequence found in the largest subunit of RNA polymerase II. cypher1 and cypher2 mRNAs exhibited identical expression patterns. Both are exclusively expressed in cardiac and striated muscle in embryonic and adult stages. By biochemical assays, we have demonstrated that Cypher1 and Cypher2 bind to alpha-actinin-2 via their PDZ domains. This interaction has been further confirmed by immunohistochemical studies that demonstrated co-localization of Cypher and alpha-actinin at the Z-lines of cardiac muscle. We have also found that Cypher1 binds to protein kinase C through its LIM domains. Phosphorylation of Cypher by protein kinase C has demonstrated the functional significance of this interaction. Together, our data suggest that Cypher1 may function as an adaptor in striated muscle to couple protein kinase C-mediated signaling, via its LIM domains, to the cytoskeleton (alpha-actinin-2) through its PDZ domain.  相似文献   

20.
Diseases caused by many Gram-negative bacterial pathogens depend on the activities of bacterial effector proteins that are delivered into eukaryotic cells via specialized secretion systems. Effector protein function largely depends on specific subcellular targeting and specific interactions with cellular ligands. PDZ domains are common domains that serve to provide specificity in protein-protein interactions in eukaryotic systems. We show that putative PDZ-binding motifs are significantly enriched among effector proteins delivered into mammalian cells by certain bacterial pathogens. We use PDZ domain microarrays to identify candidate interaction partners of the Shigella flexneri effector proteins OspE1 and OspE2, which contain putative PDZ-binding motifs. We demonstrate in vitro and in cells that OspE proteins interact with PDLIM7, a member of the PDLIM family of proteins, which contain a PDZ domain and one or more LIM domains, protein interaction domains that participate in a wide variety of functions, including activation of isoforms of protein kinase C (PKC). We demonstrate that activation of PKC during S. flexneri infection is attenuated in the absence of PDLIM7 or OspE proteins and that the OspE PDZ-binding motif is required for wild-type levels of PKC activation. These results are consistent with a model in which binding of OspE to PDLIM7 during infection regulates the activity of PKC isoforms that bind to the PDLIM7 LIM domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号