首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dosage compensation in mammals involves silencing of one X chromosome in XX females and requires expression, in cis, of Xist RNA. The X to be inactivated is randomly chosen in cells of the inner cell mass (ICM) at the blastocyst stage of development. Embryonic stem (ES) cells derived from the ICM of female mice have two active X chromosomes, one of which is inactivated as the cells differentiate in culture, providing a powerful model system to study the dynamics of X inactivation. Using microarrays to assay expression of X-linked genes in undifferentiated female and male mouse ES cells, we detect global up-regulation of expression (1.4- to 1.6-fold) from the active X chromosomes, relative to autosomes. We show a similar up-regulation in ICM from male blastocysts grown in culture. In male ES cells, up-regulation reaches 2-fold after 2–3 weeks of differentiation, thereby balancing expression between the single X and the diploid autosomes. We show that silencing of X-linked genes in female ES cells occurs on a gene-by-gene basis throughout differentiation, with some genes inactivating early, others late, and some escaping altogether. Surprisingly, by allele-specific analysis in hybrid ES cells, we also identified a subgroup of genes that are silenced in undifferentiated cells. We propose that X-linked genes are silenced in female ES cells by spreading of Xist RNA through the X chromosome territory as the cells differentiate, with silencing times for individual genes dependent on their proximity to the Xist locus.  相似文献   

2.
Kovacevic M  Schaeffer SW 《Genetics》2000,156(1):155-172
This article presents a nucleotide sequence analysis of 500 bp determined in each of five X-linked genes, runt, sisterlessA, period, esterase 5, and Heat-shock protein 83, in 40 Drosophila pseudoobscura strains collected from two populations. Estimates of the neutral migration parameter for the five loci show that gene flow among D. pseudoobscura populations is sufficient to homogenize inversion frequencies across the range of the species. Nucleotide diversity at each locus fails to reject a neutral model of molecular evolution. The sample of 40 chromosomes included six Sex-ratio inversions, a series of three nonoverlapping inversions that are associated with a strong meiotic drive phenotype. The selection driven by the Sex-ratio meiotic drive element has not fixed variation across the X chromosome of D. pseudoobscura because, while significant linkage disequilibrium was observed within the sisterlessA, period, and esterase 5 genes, we did not find evidence for nonrandom association among loci. The Sex-ratio chromosome was estimated to be 25,000 years old based on the decomposition of linkage disequilibrium between esterase 5 and Heat-shock protein 83 or 1 million years old based on the net divergence of esterase 5 between Standard and Sex-ratio chromosomes. Genetic diversity was depressed within esterase 5 within Sex-ratio chromosomes, while the four other genes failed to show a reduction in heterozygosity in the Sex-ratio background. The reduced heterogeneity in esterase 5 is due either to its location near one of the Sex-ratio inversion breakpoints or that it is closely linked to a gene or genes responsible for the Sex-ratio meiotic drive system.  相似文献   

3.
4.
The Z and W sex chromosomes of birds have evolved independently from the mammalian X and Y chromosomes [1]. Unlike mammals, female birds are heterogametic (ZW), while males are homogametic (ZZ). Therefore male birds, like female mammals, carry a double dose of sex-linked genes relative to the other sex. Other animals with nonhomologous sex chromosomes possess "dosage compensation" systems to equalize the expression of sex-linked genes. Dosage compensation occurs in animals as diverse as mammals, insects, and nematodes, although the mechanisms involved differ profoundly [2]. In birds, however, it is widely accepted that dosage compensation does not occur [3-5], and the differential expression of Z-linked genes has been suggested to underlie the avian sex-determination mechanism [6]. Here we show equivalent expression of at least six of nine Z chromosome genes in male and female chick embryos by using real-time quantitative PCR [7]. Only the Z-linked ScII gene, whose ortholog in Caenorhabditis elegans plays a crucial role in dosage compensation [8], escapes compensation by this assay. Our results imply that the majority of Z-linked genes in the chicken are dosage compensated.  相似文献   

5.
In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in the Drosophila pseudoobscura species group, much as those in the D. melanogaster group. We observed a statistically significant correlation in relative rates of nonsynonymous evolution between the two species groups tested. One Acp examined had a higher rate of nonsynonymous substitution than predicted by a neutral model in both species groups, suggesting its divergence was driven by positive Darwinian selection. To further test for the signature of selection, we examined polymorphism of three Acps within D. pseudoobscura. From this test, no Acp individually bore the signature of positive selection, but the 3 Acps together possessed an excess of nonsynonymous differences between species, relative to polymorphism within species. We conclude that faster evolution of Acps in the D. pseudoobscura group appears to be driven by positive selection, as previously suggested in the D. melanogaster group.  相似文献   

6.
7.
8.
Recent advances in our understanding of dosage compensation in flies have centered on characterizing its sex-specificity, identifying the structural RNAs involved in the process, and determining how dosage compensation is targeted to particular sites on the X chromosome.  相似文献   

9.
10.
Dosage compensation in Drosophila melanogaster triploids   总被引:1,自引:1,他引:0  
  相似文献   

11.
Wang YY  Chen M  Li B 《遗传》2012,34(8):977-984
剂量补偿机制(Dosage compensation mechanism)是雌性和雄性X染色体表达平衡的关键,保证两性间由X染色体编码的蛋白质或其他酶类物质在数量上达到平衡。不同生物的剂量补偿机制各不相同,迄今研究表明剂量补偿机制主要有以下3种模式:通过雄性的单个X染色体表达加倍;通过雌性的一条X染色体失活;通过雌性的两个X染色体的表达减半来达到平衡。对剂量补偿的研究有助于揭示X连锁基因的调控机理、性染色体的进化和分化过程,以及解释性染色体畸变的机理,因此,文章将对这种重要的调控机制研究现状及进展进行简要论述。  相似文献   

12.
13.
Nuclease digestion of isolated nuclei was used to test whether differential chromatin structure exists for a dosage-compensated heat shock gene in Drosophila pseudoobscura. No differences were observed in nuclease sensitivity at this locus in males and females, either under heat shock or non-heat shock conditions, using micrococcal nuclease or DNase I. Although the higher level of nuclease sensitivity characterized by the induced state was removed when nuclei were prepared in high salt (0.45 M sodium chloride), this procedure did not reveal covert differences in X-linked chromatin structure between males and females. However, a clear difference was observed in the nuclease sensitivity at low level (uninduced) and high level (heat-induced) expression of the X-linked heat shock gene, suggesting that the same gene transcribed at two steady state rates can have different chromatin structures.  相似文献   

14.
15.
The X1R chromosome of Drosophila miranda and the 3L autosome of Drosophila melanogaster are thought to have originated from the ancestral D chromosomal element and therefore may contain the same set of genes. It is expected that these genes will be dosage compensated in D. miranda because of their X linkage. To test these possibilities and to study evolution of the dosage compensation mechanism, we used the 3L-linked autosomal head-specific gene 507ml of D. melanogaster to isolate the homologous gene (507 mr) from a D. miranda genomic library. In situ hybridization showed that gene 507 is located at the 12A region of the X1R chromosome of D. miranda, indicating that the chromosomal homology deduced by cytogenetic means is correct. Restriction analysis and cross-specific DNA and RNA blot hybridization revealed the presence of extensive restriction pattern polymorphism and lack of sequence similarity in some areas of the 507 mr and 507 ml DNA, including the 3 portion of the transcribed region. However, the 5 portion of the transcribed region and the DNA sequences, located approximately 0.8 kb upstream and 3 kb downstream from the 507 ml gene showed a high degreee of similarity with the DNA sequences of comparable regions of the 507 mr gene. In both species gene 507 codes for a highly abundant 1.8 kb RNA which is expressed in the retina of the compound eye. Although in D. miranda the males have one and the females have two copies of the 507 gene, the steady-state levels of the 507 mRNA in both sexes were found to be similar, indicating that gene 507 is dosage compensated in D. miranda. Thus, along with the disparate rates of evolution in different areas of the DNA associated with gene 507, in D. miranda this gene has come under the regulation of the X chromosomal dosage compensation mechanism.by M.L. Pardue  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号