首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal insertions defining Bordetella bronchiseptica siderophore phenotypic complementation group III mutants BRM3 and BRM5 were found to reside approximately 200 to 300 bp apart by restriction mapping of cloned genomic regions associated with the insertion markers. DNA hybridization analysis using B. bronchiseptica genomic DNA sequences flanking the cloned BRM3 insertion marker identified homologous Bordetella pertussis UT25 cosmids that complemented the siderophore biosynthesis defect of the group III B. bronchiseptica mutants. Subcloning and complementation analysis localized the complementing activity to a 2.8-kb B. pertussis genomic DNA region. Nucleotide sequencing identified an open reading frame predicted to encode a polypeptide exhibiting strong similarity at the primary amino acid level with several pyridoxal phosphate-dependent amino acid decarboxylases. Alcaligin production was fully restored to group III mutants by supplementation of iron-depleted culture media with putrescine (1,4-diaminobutane), consistent with defects in an ornithine decarboxylase activity required for alcaligin siderophore biosynthesis. Concordantly, the alcaligin biosynthesis defect of BRM3 was functionally complemented by the heterologous Escherichia coli speC gene encoding an ornithine decarboxylase activity. Enzyme assays confirmed that group III B. bronchiseptica siderophore-deficient mutants lack an ornithine decarboxylase activity required for the biosynthesis of alcaligin. Siderophore production by an analogous mutant of B. pertussis constructed by allelic exchange was undetectable. We propose the designation odc for the gene defined by these mutations that abrogate alcaligin siderophore production. Putrescine is an essential precursor of alcaligin in Bordetella spp.  相似文献   

2.
3.
4.
5.
6.
7.
We report the isolation and preliminary phenotypic characterization of manganese-resistant Bordetella bronchiseptica mutants with respect to deregulation of siderophore and iron-regulated protein expression. The fur gene of Bordetella pertussis was cloned by genetic complementation of this deregulated phenotype and confirmed as fur by nucleotide sequence analysis.  相似文献   

8.
Recent studies have shown that Bordetella bronchiseptica utilizes a siderophore-mediated transport system for acquisition of iron from the host iron-binding proteins lactoferrin and transferrin. We recently identified the B. bronchiseptica siderophore as alcaligin, which is also produced by B. pertussis. Alcaligin production by B. bronchiseptica is repressed by exogenous iron, a phenotype of other microbes that produce siderophores. In this study, we report that alcaligin production by B. bronchiseptica RB50 and GP1SN was repressed by the Bordetella global virulence regulator, bvg, in addition to being Fe repressed. Modulation of bvg locus expression with 50 mM MgSO4 or inactivation of bvg by deletion allowed strain RB50 to produce alcaligin. In modulated organisms, siderophore production remained Fe repressed. These observations contrasted with our previous data indicating that alcaligin production by B. bronchiseptica MBORD846 and B. pertussis was repressed by Fe but bvg independent. Despite bvg repression of alcaligin production, strain RB50 was still able to acquire Fe from purified alcaligin, suggesting that expression of the bacterial alcaligin receptor was not repressed by bvg. We tested 114 B. bronchiseptica strains and found that bvg repression of alcaligin production was strongly associated with Bordetella phylogenetic lineage and with host species from which the organisms were isolated.  相似文献   

9.
Siderophore production in response to iron limitation was observed in Alcaligenes eutrophus CH34, and the corresponding siderophore was named alcaligin E. Alcaligin E was characterized as a phenolate-type siderophore containing neither catecholate nor hydroxamate groups. Alcaligin E promoted the growth of siderophore-deficient A. eutrophus mutants under iron-restricted conditions and promoted 59Fe uptake by iron-limited cells. However, the growth of the Sid- mutant AE1152, which was obtained from CH34 by Tn5-Tc mutagenesis, was completely inhibited by the addition of alcaligin E. AE1152 also showed strongly reduced 59Fe uptake in the presence of alcaligin E. This indicates that a gene, designated aleB, which is involved in transport of ferric iron-alcaligin E across the membrane is inactivated. The aleB gene was cloned, and its putative amino acid sequence showed strong similarity to those of ferric iron-siderophore receptor proteins. Both wild-type strain CH34 and aleB mutant AE1152 were able to use the same heterologous siderophores, indicating that AleB is involved only in ferric iron-alcaligin E uptake. Interestingly, no utilization of pyochelin, which is also a phenolate-type siderophore, was observed for A. eutrophus CH34. Genetic studies of different Sid- mutants, obtained after transposon mutagenesis, showed that the genes involved in alcaligin E and ferric iron-alcaligin E receptor biosynthesis are clustered in a 20-kb region on the A. eutrophus CH34 chromosome in the proximity of the cys-232 locus.  相似文献   

10.
Temporal expression patterns of the Bordetella pertussis alcaligin, enterobactin and haem iron acquisition systems were examined using alcA-, bfeA- and bhuR-tnpR recombinase fusion strains in a mouse respiratory infection model. The iron systems were differentially expressed in vivo, showing early induction of the alcaligin and enterobactin siderophore systems, and delayed induction of the haem system in a manner consistent with predicted changes in host iron source availability during infection. Previous mixed infection competition studies established the importance of alcaligin and haem utilization for B. pertussis in vivo growth and survival. In this study, the contribution of the enterobactin system to the fitness of B. pertussis was confirmed using wild-type and enterobactin receptor mutant strains in similar competition infection experiments. As a correlate to the in vivo expression studies of B. pertussis iron systems in mice, sera from uninfected and B. pertussis-infected human donors were screened for antibody reactivity with Bordetella iron-repressible cell envelope proteins. Pertussis patient sera recognized multiple iron-repressible proteins including the known outer membrane receptors for alcaligin, enterobactin and haem, supporting the hypothesis that B. pertussis is iron-starved and responds to the presence of diverse iron sources during natural infection.  相似文献   

11.
12.
13.
Vibrio cholerae produces the novel phenolate siderophore vibriobactin and several outer membrane proteins in response to iron starvation. To determine whether any of these iron-regulated outer membrane proteins serves as the receptor for vibriobactin, the classical V. cholerae strain 0395 was mutagenized by using TnphoA, and iron-regulated fusions were analyzed for vibriobactin transport. One mutant, MBG14, was unable to bind or utilize exogenous vibriobactin and did not grow in low-iron medium. However, synthesis of the siderophore and transport of other iron complexes, including ferrichrome, hemin, and ferric citrate, were unaffected in MBG14. Analysis of membrane proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated the loss from the mutant of a 74-kDa iron-regulated outer membrane protein present in the parental strain when grown in iron-limiting conditions. This protein partitioned into the detergent phase during Triton X-114 extraction, suggesting that it is a hydrophobic membrane protein. DNA sequences encoding the gene into which TnphoA had inserted, designated viuA (vibriobactin uptake), restored the wild-type phenotype to the mutant; the complemented mutant expressed the 74-kDa outer membrane protein under iron-limiting conditions and possessed normal vibriobactin binding and uptake. These data indicate that the 74-kDa outer membrane protein of V. cholerae serves as the vibriobactin receptor.  相似文献   

14.
15.
The recently discovered pathogen Bordetella holmesii has been isolated from the airways and blood of diseased humans. Genetic events contributing to the emergence of B. holmesii are not understood, and its phylogenetic position among the bordetellae remains unclear. To address these questions, B. holmesii strains were analyzed by comparative genomic hybridization (CGH) to a Bordetella pertussis microarray and by multilocus sequence typing. Both methods indicated substantial sequence divergence between B. pertussis and B. holmesii. However, CGH identified a putative pathogenicity island of 66 kb that is highly conserved between these species and contains several IS481 elements that may have been laterally transferred from B. pertussis to B. holmesii. This island contains, among other genes, a functional, iron-regulated locus encoding the biosynthesis, export, and uptake of the siderophore alcaligin. The acquisition of this genomic island by B. holmesii may have significantly contributed to its emergence as a human pathogen. Horizontal gene transfer between B. pertussis and B. holmesii may also explain the unusually high sequence identity of their 16S rRNA genes.  相似文献   

16.
The siderophores produced by iron-starved Bordetella pertussis and B. bronchiseptica were purified and were found to be identical. Using mass spectrometry and proton nuclear magnetic resonance, we determined that the siderophore produced by these organisms was identical to alcaligin, a siderophore produced by Alcaligenes denitrificans.  相似文献   

17.
The iron-transport genes from the pJM1 plasmid of Vibrio anguillarum have been cloned and sequenced. Five open-reading frames have been identified, one of which encodes the outer membrane receptor for ferric anguibactin, OM2. This coding region corresponds to a protein of 726 amino acids with a Mr of 78,777. The protein has a hydrophobic signal sequence of 35 amino acids and a potential membrane-associated hydrophobic region at the carboxyl terminus. A 2.3-kilobase iron-regulated mRNA was transcribed from this region in vivo. The four other open-reading frames were shown to be involved in the regulation of OM2 expression and in iron transport by the use of insertion mutagenesis and complementation analysis. One of these open-reading frames, ORF3, encodes a 40-kDa polypeptide which, as deduced from the amino acid sequence and the hydropathy plot, is likely to be membrane-associated and together with OM2 may play a role in the transport of iron into the cell cytosol.  相似文献   

18.
A previous study found that alcaligin siderophore production by Bordetella bronchiseptica strain RB50 is Bvg repressed. In contrast, we report that alcaligin production by RB50 does not require Bvg phenotypic phase modulation and that isogenic Bvg(Con) and Bvg(-) phase-locked mutants both produce alcaligin in response to iron starvation.  相似文献   

19.
20.
We previously reported that Vibrio parahaemolyticus expresses two outer membrane proteins of 78 and 83 kDa concomitant with production of siderophore vibrioferrin in response to iron starvation stress and that these proteins are the ferric vibrioferrin receptor and heme receptor, respectively (S. Yamamoto, T. Akiyama, N. Okujo, S. Matsuura, and S. Shinoda, Microbiol. Immunol. 39:759-766, 1995; S. Yamamoto, Y. Hara, K. Tomochika, and S. Shinoda, FEMS Microbiol. Lett. 128:195-200, 1995). In this study, the Fur titration assay (FURTA) system was applied to isolate DNA fragments containing a potential Fur box from a genomic DNA library of V. parahaemolyticus WP1. Sequencing a 3.2-kb DNA insert in one FURTA-positive clone revealed that an amino acid sequence deduced from a partial gene, which was preceded by a full-length gene (psuA) encoding a receptor for a siderophore of unknown origin, was consistent with the N-terminal amino acid sequence of the 78-kDa ferric vibrioferrin receptor. Then, the full-length gene (pvuA) encoding the ferric vibrioferrin receptor was cloned and characterized. The deduced protein encoded by pvuA displayed the highest similarity (31% identity; 48% similarity) to RumA, a ferric rhizoferrin receptor of Morganella morganii. Primer extension and Northern blot analyses indicated that psuA and pvuA constitute an operon which is transcribed from a Fur-repressed promoter upstream of psuA. The product of the pvuA gene and its function were confirmed by generating a pvuA-disrupted mutant, coupled with genetic complementation studies. A mutant with disruption in the upstream psuA gene also displayed a phenotype impaired in the utilization of ferric vibrioferrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号