首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbonylation of the anionic iridium(III) methyl complex, [MeIr(CO)2I3] (1) is an important step in the new iridium-based process for acetic acid manufacture. A model study of the migratory insertion reactions of 1 with P-donor ligands is reported. Complex 1 reacts with phosphites to give neutral acetyl complexes, [Ir(COMe)(CO)I2L2] (L = P(OPh)3 (2), P(OMe)3 (3)). Complex 2 has been isolated and fully characterised from the reaction of Ph4As[MeIr(CO)2I3] with AgBF4 and P(OPh)3; comparison of spectroscopic properties suggests an analogous formulation for 3. IR and 31P NMR spectroscopy indicate initial formation of unstable isomers of 2 which isomerise to the thermodynamic product with trans phosphite ligands. Kinetic measurements for the reactions of 1 with phosphites in CH2Cl2 show first order dependence on [1], only when the reactions are carried out in the presence of excess iodide. The rates exhibit a saturation dependence on [L] and are inhibited by iodide. The reactions are accelerated by addition of alcohols (e.g. 18× enhancement for L = P (OMe)3 in 1:3 MeOH-CH2Cl2). A reaction mechanism is proposed which involves substitution of an iodide ligand by phosphite, prior to migratory CO insertion. The observed rate constants fit well to a rate law derived from this mechanism. Analysis of the kinetic data shows that k1, the rate constant for iodide dissociation, is independent of L, but is increased by a factor of 18 on adding 25% MeOH to CH2Cl2. Activation parameters for the k1 step are ΔH = 71 (±3) kJ mol, ΔS = −81 (±9) J mol−1 K−1 in CH2Cl2 and ΔH = 60(±4) kJ mol−1, ΔS = −93(± 12) J mol−1 K−1 in 1:3 MeOH-CH2Cl2. Solvent assistance of the iodide dissociation step gives the observed rate enhancement in protic solvents. The mechanism is similar to that proposed for the carbonylation of 1.  相似文献   

2.
Aquifex aeolicus 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the condensation of arabinose 5-phosphate (A5P) and phosphoenolpyruvate (PEP) by favoring the activation of a water molecule coordinated to the active-site metal ion. Cys11, His185, Glu222 and Asp233 are the other metal ligands. Wild-type KDO8PS is purified with Zn(2+) or Fe(2+) in the active site, but maximal activity in vitro is achieved when the endogenous metal is replaced with Cd(2+). The H185G enzyme retains 8% of the wild-type activity. ICP mass spectrometry analysis indicates that loss of His185 decreases the enzyme affinity for Fe(2+), but not for Zn(2+). However, maximal activity is again achieved by substitution of the endogenous metal with Cd(2+). We have determined the X-ray structures of the Cd(2+) H185G enzyme in its substrate-free form, and in complex with PEP, and PEP plus A5P. These structures show a normal amount of Cd(2+) bound, suggesting that coordination by His185 is not essential to retain Cd(2+) in the active site. Nonetheless, there are significant changes in the coordination sphere of Cd(2+) with respect to the wild-type enzyme, as the carboxylate moiety of PEP binds directly to the metal ion and replaces water and His185 as ligands. These observations indicate that the primary function of His185 in A.aeolicus KDO8PS is to orient PEP in the active site of the enzyme in such a way that a water molecule on the sinister (si) side of PEP can be activated by direct coordination to the metal ion.  相似文献   

3.
B. Bouges-Bocquet 《BBA》1973,292(3):772-785

1. 1. By varying the redox potential of a chloroplast suspension, we obtained new evidence for an equilibrium between states S0 and S1 in the model of Kok, B., Forbush, B. and McGloin, N. (1970, Photochem. Photobiol. 11, 457–475). The mid-point potential of the S0 to S1 couple is close to that for the pool of the electron acceptor of System II, A to A.

2. 2. The limiting steps between two consecutive photoreactions of System II in Chlorella and spinach chloroplasts, have been studied.

2.1. (a) The limiting step from S1 to S2 (noted γ1t)) is not exponential. Its temperature coefficient becomes greater as the reaction proceeds. The shape of the kinetics is an intrinsic property of each center. Chloroplasts fixed with 2% glutaraldehyde, show simple first order kinetics.

2.2. (b) The limiting step from S0 to S10t)) exhibits the same characteristics as γ1t)).

2.3. (c) The limiting step from S2 to S32t)) shows sigmoidal kinetics; two reactions are involved. One of the reactions exhibits the same properties as γ0t) and γ1t).

2.4. (d) The limiting step from S3 to S03t)) is a first order reaction, two times slower than the other transitions. This reaction is interpretated in terms of oxygen release.

3. 3. We also studied the limiting steps in the presence of low concentrations (50 μM) of hydroxylamine. The results favor the binding of two molecules of hydroxylamine to every photochemical center.

Abbreviations: DCIP, dichlorophenolindophenol  相似文献   


4.
The evaluation of estrogens (estrone, estradiol, and their sulfates) in the breast tissue of post-menopausal patients with breast cancer indicates high levels, particularly of estrone sulfate (E1 S) which is 15–25 times higher than in the plasma. Breast cancer tissue contains the enzymes necessary for local synthesis of estradiol and it was demonstrated that, despite the presence of the sulfatase and its messenger in hormone-dependent and hormone-independent breast cancer cells, this enzyme operates particularly in hormone-dependent cells. Different progestins: Nomegestrol acetate, Promegestone, progesterone, as well as Danazol, can block the conversion of E1 S to E2 very strongly in hormone-dependent breast cancer cells. The last step in the formation of estradiol is the conversion of E1 to this estrogen by the action of 17β-hydroxysteroid dehydrogenase. This activity is preferentially in the reductive direction (formation of E2) in hormone-dependent cells, but oxidative (E2 → E1) in hormone-independent cells. Using intact hormone-dependent cells it was observed that Nomegestrol acetate can block the conversion of E1 to E2. It is concluded, firstly, that in addition to ER mutants other factors are involved in the transformation of hormone-dependent breast cancer to hormone-independent, this concerns the enzymatic activity in the formation of E2; it is suggested that stimulatory or repressive factor(s) involved in the enzyme activity are implicated as the cancer evolves to hormone-independence; secondly, different drugs can block the conversion of E1 S to E2. Clinical trials of these “anti-enzyme” substances in breast cancer patients could be the next step to investigate new therapeutic possibilities for this disease.  相似文献   

5.
Wolfgang Haehnel   《BBA》1976,440(3):506-521
The flash-induced oxidation kinetics of the primary acceptor of light Reaction II (X-320) and the reduction kinetics of chlorophyll a1 (P-700) after far-red preilluination have been studied with high time resolution in spinach chloroplasts.

1. 1. The kinetics of chlorophyll a1 exhibits a pronounced lag phase of 2–3 ms at the onset of reduction as would be expected for the final product of consecutive reactions. Because the oxidation of the plastoquinone pool is the rate-limiting step for the electron transport between the two light reactions, the lag indicates the maximal electron transfer time over all preceding reactions after light Reaction II.

2. 2. The observation that the lag phase decreases with decreasing pH is evidence of an electron transfer step coupled to a proton uptake reaction.

3. 3. Protonation of X-320 after reduction in the flash is excluded because a slight increase of the decay time is found at decreasing pH values.

4. 4. The time course of plastohydroquinone formation is deduced from the first derivative of the reduction kinetics of chlorophyll a1. This approach covers those plastohydroquinone molecules being available to the electron carriers of System I via the rate-limiting step. Direct measurements of absorbance changes would not allow to discriminate between these and functionally different plastohydroquinone molecules.

5. 5. The derived time course of plastohydroquinone at different pH gives evidence for an additional electron transfer step with a half time of about 1 ms following the proton uptake and preceding the rate-limiting step. It is tentatively attributed to the diffusion of neutral plastohydroquinone across the hydrophobic core of the thylakoid membrane.

6. 6. The lower limit of the rate constant for proton uptake by an electron carrier, consistent with the lag of chlorophyll a1 reduction, is estimated as > 1011 M−1 · s−1. The value is higher than that of the fastest diffusion controlled protonations of organic molecules in solution.

Possible mechanisms of linear electron transport between light Reaction II and the rate-limiting oxidation of neutral plastohydroquinone are thoroughly discussed.  相似文献   


6.
A novel neurokinin-1 receptor antagonist, (±)-(1R*,3S*,4S*,5S*)-4-[(N-(2-methoxy-5-trifluoromethoxybenzyl)amino]-3-phenyl-2-aza-7-oxabicyclo[3.3.0]octane (1), was synthesized stereoselectively using Padwa’s intramolecular 1,3-dipolar cycloaddition methodology as the key step. Compound (±)-1 showed high affinity for the NK-1 receptors in human IM-9 cells with an IC50 value of 0.22 nM. This new structural scaffold demonstrated significant in vivo antagonistic activity in the guinea pig ureter capsaicin-induced plasma extravasation model with an ED50 value of 1–10 mg/kg, po.  相似文献   

7.
Reactions of cct-RuH(SR)(CO)2(PPh3)2 (1) (cct = cis, cis, trans) with R′SH provide cct-RuH(SR′)(CO)2(PPh3)2 (R = alkyl, aryl): based on described kinetic data, the proposed mechanism involves PPh3 loss, coordination of R′SH, intramolecular protonation of RS by R′SH, and RSH elimination. The intramolecular protonation step circumvents a potentially slow RSH reductive elimination step. A similar mechanism is proposed for the thiol exchange reactions of cct-Ru(SR)2(CO)2(PPh3)2 (2). A corresponding dissociative mechanism is also proposed for the reaction of 1 with P(p-tolyl)3, which gives cct-RuH(SR)(CO)2(PPh3)(P(p-tolyl)3) and cct-RuH(SR)(CO)2 (P(p-tolyl)3)2. Other reactions described include the reactions of 1 with H2, CO, HCl and PPh3, and the reactions of 2 with P(p-tolyl)3 and H2. Exposure to light causes 2 to dimerize in solution.  相似文献   

8.
The enzyme 3-deoxy-D-manno-2-octulosonate-8-phosphate (KDO8P) synthase catalyzes the condensation reaction between phosphoenolpyruvate (PEP) and D-arabinose 5-phosphate (A5P) to produce KDO8P and inorganic phosphate. In attempts to investigate the lack of antibacterial activity of the most potent inhibitor of KDO8P synthase, the amino phosphonophosphate 3, we have synthesized its hydrolytically stable isosteric phosphonate analogue 4 and tested it as an inhibitor of the enzyme. The synthesis of 4 was accomplished in a one step procedure by employing the direct reductive amination in aqueous media between unprotected sugar phosphonate and glyphosate. The analogue 4 proved to be a competitive inhibitor of KDO8P synthase with respect to both substrates A5P and PEP binding. In vitro antibacterial tests against a series of different Gram-negative organisms establish that both inhibitors (3 and 4) lack antibacterial activity probably due to their reduced ability to penetrate the bacterial cell membrane.  相似文献   

9.
3-Deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase, catalyzes the aldol-type condensation between phosphoenolpyruvate (PEP) and d-arabinose-5-phosphate (A5P) to produce the unusual 8-carbon sugar KDO8P, and inorganic phosphate. A 15.5-kb segment containing the kdsA gene from the hyperthermophilic bacterium Aquifex pyrophilus was cloned from a genomic library and sequenced. The native kdsA gene lacks a typical ribosome binding site, but contains a conserved U,A-rich sequence upstream to the start codon. The purified kdsA gene product catalyzes the formation of KDO8P from its natural substrates, PEP and A5P, as determined by 1H NMR analysis. KDO8P synthase showed maximum activity at 80 °C and pH 5.5–6.0 at 10-min reaction assay. At temperatures of 70, 80, and 90 °C, the enzyme exhibited half-lives of 8.0, 2.25, and 0.5 h, respectively. The kinetic constants at 60 °C were KmA5P=70 M, KmPEP=290 M, and kcat=4 s–1. The isolated enzyme contained 0.19 and 0.26 mol iron and zinc, respectively, per mole of enzyme subunit. Treatment with metal chelators eliminated enzyme activity, and by the addition of several divalent metal ions, the activity was restored and even exceeded the original activity. These results indicate that A. pyrophilus KDO8P synthase is a metal-dependent enzyme. A C11A mutant of KDO8P synthase from A. pyrophulis retained less than 1% of the wild-type activity and was shown to be incapable of metal binding.Communicated by G. Antranikian  相似文献   

10.
Density functional theory (DFT) computations at the B3LYP/Lanl2DZ level were used to elucidate the oxygen atom transfer (OAT) and coupled electron proton transfer (CEPT) reaction steps involved in the biomimetic catalytic cycle performed by polymer-supported MoVIO2(NN′)2 complexes [NN′ = phenyl-(pyrrolato-2-ylmethylene)-amine] with water as oxygen source, trimethyl-phosphane as oxygen acceptor and one-electron oxidising agents. The DFT method employed has been validated against experimental data [X-ray crystal structures of a NN′ ligand and a MoVIO2(NN′)2 complex as well as kinetic data]. The rate-limiting step in the forward-OAT from [MoVIO2] to PMe3 is the attack of PMe3 at an oxo ligand with ΔG (298 K) = 64.6 kJ mol−1. Dissociation of the product OPMe3 is facile with ΔG (298 K) = 26.3 kJ mol−1 giving a mono-oxo [MoIVO] complex which fills its coordination sphere with a further PMe3 substrate with ΔG (298 K) = 39.2 kJ mol−1. One-electron oxidation to a Mo(V) phosphane complex precedes the coordination of water/hydroxide. Additionally, the comproportionation of [MoVIO2] and [MoIVO] to dinuclear oxo-bridged [OMoV–O–MoVO] species has been calculated as the thermodynamic sink in this system and the back-OAT from dmso to mono-oxo [MoIVO] to give [MoVIO2] has been shown to involve an equilibrium between stereoisomeric [MoVIO2] complexes with an activation barrier of ΔG (298 K) = 113.1 kJ mol−1.  相似文献   

11.
The complex [(PP3)OsH(N2)]BPh4 is a catalyst precursor for the regio- and stereoselective dimerization of HCCR (R=Ph, SiMe3) to (Z)-1,4-disubstituted-but-3-en-l-ynes (PP3=P(CH2CH2PPh2)3). In the presence of H2O or C2H5OH, the catalytic reaction with HCCSiMe3 selectively gives but-3-en-l-ynyl-trimethyisilane. A detailed study under different experimental conditions, the detection of some intermediates, and the use of isolated complexes in independent reactions, taken altogether, permit mechanistic conclusions which account for the observed products. A key-role is played by (vinylidene)σ-alkynyl complexes which transform into η3-butenynyl derivatives via intramolecular C---C bond formation. The Os(II) η3-butenynyl complexes are likely reagents in the rate determining step of the catalytic cycle, and produce free (Z)-1,4-disubstituted-but-3-en-l-ynes upon σ-bond metathesis reaction with HCCR. The 16-electron fragments [(PP3)OsX]+ (X = H, Cl, CCR) are capable of promoting the 1-alkyne to vinylidene tautomerism. In particular, the (vinylidene)hydride [(PP3)OsH{C=C(H)-SiMe3}]BPh4 has been isolated and properly characterized. Since the stoichiometric reaction of the latter compound with HCCSiMe3 gives vinyltrimethylsilane, the formation of (vinylidene)hydride species is suggested to be an effective step, alternative to 1-alkyne insertion, in the reduction of 1-alkynes to alkenes assisted by hydrido metal complexes.  相似文献   

12.
Thor Arnason  John Sinclair 《BBA》1976,430(3):517-523
The modulated oxygen polarograph has been used to study the rate-determining steps of photosynthetic oxygen evolution in spinach chloroplasts. The rate constant, k, of the reaction has a value of 218±10 (S.E.) s−1 at 23 °C and an activation energy of 7±2 (S.E.) kcal · mol−1. A kinetic isotope experiment indicated that this step is probably not the water-splitting reaction. These findings resemble previous results with the unicellular alga Chlorella (Sinclair, J. and Arnason, T. (1974) Biochim. Biophys. Acta 368, 393–400). In other experiments we changed the pH, O2 concentration and osmolarity of the medium, and treated the chloroplasts with 1 mM NH4Cl without detecting any significant change in k. These results suggest that the step is irreversible. However, a significantly lower value of k, 110±20 (S.E.) s−1 was obtained when all salts except 1 mM MgCl2 were removed from the medium bathing the chloroplasts.  相似文献   

13.
Kinetic and activation parameter data for the reactions of cct-Ru(H)2(CO)2(PPh3)2 (1) (cct = cis, cis, trans) in THF with thiols, CO and PPh3 to give cct-RuH(SR)(CO)2(PPh3)2, Ru(CO)3(PPh3)2 and Ru(CO)2(PPh3)2, respectively, reveal a common, rate-determining step, the initial dissociation of H2 from 1; the activated complex probably resembles the corresponding Ru(η2-H2) species. Reaction of Ru(H)2(dppm)2 (2) (as a cis/trans mixture, DPPM = bis(diphenylphosphino)methane) with thiols initially generated cis- and trans- RuH(SR) (dppm)2 with a rate that depends on both the type and concentration of thiol. The higher basicity of the hydride ligands in 2 (versus 1), which is demonstrated by deuterium exchange with CD3OD, gives rise in the thiol reaction to an initial protonation step prior to loss of H2. A species detected in the thiol reaction is possibly [RuH(η2-H2 (dppm)2]2, the anticipated intermediate for this reaction and for the hydrogen exchange with alcohol. A longer reaction of 2 with PhCH2SH gives solely cis-Ru(SCH2Ph)2(dppm)2.  相似文献   

14.
Proton decoupled 31P and 13C solution NMR experiments were applied to mixtures of 3-deoxy-D-manno-2-octulosonate-8-phosphate (KDO8P) synthase, with each of its natural substrates, phosphoenolpyruvate and arabinose-5-phosphate (ASP), and product KDO8P to identify the formation of the enzyme-substrate and enzyme-product complexes. Effects arising from ligand interactions with the enzyme are reported via chemical shifts and line broadening with respect to those of the free ligands in solution, depending on the strength and dynamics of binding under thermodynamic equilibrium conditions. The characterization was done both at low and high field spectrometers, 200 and 500 MHz (1H frequencies), and in cases of 31P NMR measurements, it was demonstrated that only the low field spectrometer is capable of providing direct experimental evidence on the enzyme-ligand interactions. Since both the substrate A5P and the product KDO8P exhibit multiple anomeric forms in solution, evidence for the preference of recognition and binding of particular forms is sought.  相似文献   

15.
John Sinclair  Thor Arnason 《BBA》1974,368(3):393-400
The modulated polarographic technique of O2 detection was applied to Chlorella to study the rate-limiting thermal reaction between Photosystem II and O2 evolution. From an analysis of the operation of the polarograph at different frequencies, it was concluded that a first order thermal reaction of rate constant 305±20 (S.E.) s−1 was consistent with the results of 22 °C. When the algae were successively studied in solutions made up with 2H2O and H2O, a kinetic isotopic effect for the rate constant of 1.29±0.05 (S.E.) was found. This suggests that the rate limiting step does not involve the breaking of the O-H bond in water. A temperature study of the rate constant indicated an activation energy of 5.9±0.5 (S.E.) kcal·mole−1 and an entropy of activation of −25 cal·degree−1·mole−1. The linearity of the Arrhenius plot between 8 and 42 °C demonstrated that only one reaction was rate-limiting over this temperature range.  相似文献   

16.
Mechanical treatments of cell suspensions of Escherichia coli K 12 strain PA 601, and its two mutants chl A and chl B, in a buffer without Mg2+ lead to partial solubilization of membrane-bound ATPase. After ultracentrifugation of cell-free extracts, ATPase can be recovered in the soluble fraction. Contrary to membrane ATPase, the soluble enzyme has the following properties: (1) it is insensitive to N,N′-dicyclohexylcarbodiimide; (2) heat-inactivation kinetics show a reactivation in the first 3 min and the half-time is 15 min; (3) ADP is a substrate. In the course of complementation between soluble fractions of mutants chl A and chl B, a part of soluble ATPase is incorporated into the newly formed particles. The specific activity of these particles is nearly the same as that of native particles; the ATPase bound to native membrane and the ATPase bound to the newly-formed particles both have the same biochemical properties.  相似文献   

17.
WH3(OCH2C6H5) (PMe3)4 (1) is formed upon reaction of WH2(PMe3)5 with benzyl alcohol for 12 days at ambient temperatures. Thermolysis of 1 at 80°C in toluene solution gives the carbonyl complex, WH2(CO)(PMe3)4 (2) and benzene. The conversion is slower in the presence of H2. Reaction of 1 with D2 leads to H/D exchange in the hydride ligands and in the benzylic and ortho-phenyl positions of the benzyloxide. A mechanism for the thermolysis of 1, based on an H2 elimination, sequential C-H activations, and CO deinsertion from an acyl ligand, is proposed. Thermolysis of 1 is much faster in the presence of free benzyl alcohol and 2 is not formed. The products under these conditions are toluene, bibenzyl, WH4(PMe3)4, PMe3 and unidentified material, consistent with the intermediacy of benzyl radicals.  相似文献   

18.
人类活动显著增加了氮沉降,对森林生态系统产生了不同程度的影响;凋落物在其分解过程中输入的大量有机碳、氮也会影响土壤碳氮的形成、稳定及转化.本研究选择亚热带常绿阔叶林,对样地进行8年氮添加[对照(0)、低氮(75 kg·hm-2·a-1)、高氮(150 kg·hm-2·a-1)]和控制凋落物处理(保留凋落物、去除凋落物),之后采集土壤样品,通过K2SO4、Na2B4O7、Na4P2O7、NaOH、H2SO4、Na2S2O4、HF等化学试剂逐级浸提土壤,测定各浸提液和残渣中的碳、氮含量,研究凋落物及氮添加对土壤矿物结合态碳、氮的影响.结果表明: 整体上,胡敏素(humin,H)组分的土壤碳、氮含量均为最高,分别占土壤全量的33.5%和33.3%.Na2B4O7溶液提取的土壤可溶性碳、氮含量最高,其次是NaOH和Na4P2O7溶液,3种试剂提取的土壤可溶性总碳、可溶性总氮以及可溶性有机氮分别占提取总量的46.2%、47.9%和76.5%.与对照相比,氮添加增加了Na2S2O4和H组分碳、氮含量;与保留凋落物比较,去除凋落物降低了Na2B4O7、H2SO4、Na2S2O4和H组分的碳含量,以及NaOH、HF和H组分的氮含量.保留凋落物和氮添加显著增加了K2SO4组分氮含量.可见,保留凋落物和外源氮通过影响化学稳定性不同的土壤组分的碳氮变化来改变土壤碳氮过程.  相似文献   

19.
Abstract The sexual mating reaction between gametes of the green alga Chlamydomonas eugametos starts by cell-cell contacts involving sex-specific cell-adhesion molecules (agglutinins) at the flagellar membrane. An in vitro adhesion assay is described using glutaraldehyde-fixed gametes. In vitro adhesion was fully comparable to in vivo adhesion, making it a reliable assay to study the initial recognition step of sexual adhesion in vivo. It was shown that both agglutinins are capable of inhibiting sexual adhesion at similar concentrations (1−2×10−10 M), indicating that mt+ and mt agglutinins interact with each other during binding. This was confirmed by demonstrating that charcoal particles adsorbed with purified agglutinins of the opposite mating type aggregate with each other.  相似文献   

20.
The effect of activated oxygen species on human hemoglobins was studied. All radicals induced polymerization in Hb A both intermolecular and by cross-linking of subunits (intramolecular). However, a system producing mainly superoxide ion gave the most important changes. An oxidation step is necessary to produce polymerization since in the case of cyanmet Hb A (where there is no possible oxidation) no polymerization occurs. The effect of O-2 on blocked SH β 93 Hbs or on the abnormal Hbs tested was practically identical to that on Hb A although their autoxidation rates were modified. Consequently the action of radicals is different from autoxidation processes and the modified residues in the abnormal hemoglobins are not involved in the action of superoxide ion on Hb.

The kinetics of oxidation of Hb by H2O2 followed two steps: the first is the oxidation of oxy Hb to ferri Hb and the second is hemichrome formation. This last step is independent of the presence of H2O2 since it is not inhibited by catalase. The kinetics of oxidation to ferri Hb were of second order and the rate constant was found to be 16 M-1 sec-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号