首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+ transport was studied by using basolateral plasma membrane vesicles from rat parotid gland prepared by a Percoll gradient centrifugation method. In these membrane vesicles, there were two Ca2+ transport systems; Na+/Ca2+ exchange and ATP-dependent Ca2+ transport. An outwardly directed Na+ gradient increased Ca2+ uptake. Ca2+ efflux from Ca2+-preloaded vesicles was stimulated by an inwardly directed Na+ gradient. However, Na+/Ca2+ exchange did not show any 'uphill' transport of Ca2+ against its own gradient. ATP-dependent Ca2+ transport exhibited 'uphill' transport. An inwardly directed Na+ gradient also decreased Ca2+ accumulation by ATP-dependent Ca2+ uptake. The inhibition of Ca2+ accumulation was proportional to the external Na+ level. Na+/Ca2+ exchange was inhibited by monensin, tetracaine and chlorpromazine, whereas ATP-dependent Ca2+ transport was inhibited by orthovanadate, tetracaine and chlorpromazine. Oligomycin had no effect on either system. These results suggest that in the parotid gland cellular free Ca2+ is extruded mainly by an ATP-dependent Ca2+ transport system, and Na+/Ca2+ exchange may modify the efficacy of that system.  相似文献   

2.
Sodium pump-catalyzed sodium-sodium exchange associated with ATP hydrolysis   总被引:2,自引:0,他引:2  
Inside-out red cell membrane vesicles have been used to study sodium interactions with the ATP-dependent sodium pump at sites accessible to both membrane surfaces. ATP-dependent 22Na+ influx (equivalent to efflux from cells) shows sigmoid dependence on extravesicular Na+ concentration. This is observed both in the absence of intravesicular cations and in the presence of intravesicular K or Rb ions. The kinetic behavior is similar to that observed earlier with intact cells, (Garay, R. P., and Garrahan, P. J. (1973) J. Physiol. (Lond.) 231, 297-325) and is consistent with a ratio of close to three Na ions transported per molecule of ATP hydrolyzed. With vesicles having relatively high intravesicular sodium concentration, (approximately 50 mM NaCl), the sodium pump effects an ATP-dependent sodium efflux coupled to sodium influx and to strophanthidin-sensitive ATP hydrolysis. The influx:efflux stoichiometry is approximately 1:1, and the influx:ATP hydrolysis ratio is close to 3. This ATP-dependent exchange has a higher affinity for vanadate than ATP plus ADP-dependent sodium exchange. It is concluded that this sodium-sodium exchange mode resembles sodium-potassium exchange whereby intravesicular sodium, i.e. sodium at the extracellular surface, at relatively high concentration, behaves like potassium.  相似文献   

3.
ATP-dependent calcium transport in cardiac sarcolemmal membrane vesicles   总被引:1,自引:0,他引:1  
Cardiac sarcolemmal (SL) membrane vesicles accumulated Ca in the presence of ATP. The accumulated Ca was released by osmotic shock and by the Ca ionophore A23187, indicating that the Ca had been transported into the vesicle interior. Ca uptake by the SL vesicles was not inhibited by ruthenium red, 2,4-dinitrophenol, carbonyl cyanide m-chlorophenyl hydrazone, of NaN3, agents that are known to inhibit mitochondrial Ca transport activity. In contrast to the behavior of cardiac sarcoplasmic reticulum, Ca accumulation by the SL vesicles was not stimulated by oxalate and could not driven by p-nitrophenylphosphate hydrolysis. NaCl inhibited ATP-dependent Ca uptake by the SL vesicles. This effect was shown to be due to a stimulation of Ca efflux by Na, mediated by the sarcolemmal NaCa exchange system. The results provide conclusive evidence for the presence of an ATP-dependent Ca “pump” in the cardiac SL membrane.  相似文献   

4.
Calcium transport across the basolateral membranes of the enterocyte represents the active step in calcium translocation. This step occurs by two mechanisms, an ATP-dependent pump and a Ca2+/Na+ exchange process. These studies were designed to investigate these two processes in jejunal basolateral membrane vesicles (BLMV) of the spontaneously hypertensive rats (SHR) and their genetically matched controls, Wistar-Kyoto (WKY) rats. The ATP-dependent calcium uptake was stimulated several-fold compared with no ATP condition in both SHR and WKY, but no differences were noted between rate of calcium uptake in SHR and WKY. Kinetics of ATP-dependent calcium uptake at concentrations between 0.01 and 1.0 microM revealed a Vmax of 0.67 +/- 0.03 nmol/mg protein/20 sec and a Km of 0.2 +/- 0.03 microM in SHR and Vmax of 0.69 +/- 0.12 and a Km of 0.32 +/- 0.14 microM in WKY rats. Ca2+/Na+ exchange in jejunal BLMV of SHR and WKY was investigated in two ways. First, sodium was added to the incubation medium (cis-Na+). Second, Ca2+ efflux from BLMV was studied in the presence of extravesicular Na+ (trans-Na+). Both studies suggest a decreased exchange of calcium and Na+. Kinetic parameters of Na(+)-dependent Ca2+ uptake at concentrations between 0.01 and 1.0 microM exhibited Vmax of 0.05 +/- 0.01 nanmol/mg protein/5 sec and a Km of 0.21 +/- 0.13 microM in SHR and Vmax of 0.11 +/- 0.02 nanmol/mg protein/5 sec and a Km of 0.09 +/- 0.05 in WKY, respectively. These results confirm that the intestinal BLMV of SHR and WKY rats have two mechanisms for calcium extrusion, an ATP-dependent Ca2+ transport process and a Na+/Ca2+ exchange process. The ATP-dependent process appears to be functional in SHR; however, the Ca2+/Na+ exchange mechanism appears to have a marked decrease in its maximal capacity. These findings suggest that calcium extrusion via Ca2+/Na+ is impaired in the SHR, which may lead to an increase in intracellular calcium concentration. These findings may have relevance to the development of hypertension.  相似文献   

5.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

6.
Proton-activated rubidium transport catalyzed by the sodium pump   总被引:1,自引:0,他引:1  
Although the sodium pump normally exchanges three sodium for two potassium ions, experiments with inside-out red cell membrane vesicles show that the stoichiometry is reduced when the cytoplasmic sodium concentration is decreased to less than 1 mM. The present study was designed to gain insight into the question whether other monovalent cations, particularly protons, can act as sodium congeners in effecting pump-mediated potassium transport (ATP-dependent rubidium efflux from inside-out vesicles). The results show that at low cytoplasmic sodium concentration, an increase in proton concentration effects a further reduction in sodium:rubidium stoichiometry, to a value less than the minimal expected (1Na+:3Rb+). Furthermore, when vesicles containing 86RbCl are incubated in nominally sodium-free medium. ATP-dependent net rubidium efflux (normal influx) occurs when the pH is reduced from approximately 7.0 to 6.2 or less. This efflux is inhibited by strophanthidin and vanadate. These experiments support the notion that the sodium pump can operate as an ATP-dependent proton-activated rubidium (potassium) pump without obligatory countertransport of sodium ions.  相似文献   

7.
The Na+-Ca2+ exchange mechanism in cardiac sarcolemmal vesicles can catalyze the exchange of Ca2+ on either side of the sarcolemmal membrane for Na+ on the opposing side. Little is known regarding the relative affinities of Na+ and Ca2+ for exchanger binding sites on the intra- and extracellular membrane surfaces. We have previously reported (Philipson, K.D. and Nishimoto, A.Y. (1982) J. Biol. Chem. 257, 5111-5117) a method for measuring the Na+-Ca2+ exchange of only the inside-out vesicles in a mixed population of sarcolemmal vesicles (predominantly right-side-out). We concluded that the apparent Km(Ca2+) for Na+i-dependent Ca2+ uptake was similar for inside-out and right-side-out vesicles. In the present study, we examine in detail Na+o-dependent Ca2+ efflux from both the inside-out and the total population of vesicles. To load vesicles with Ca2+ prior to measurement of Ca2+ efflux, four methods are used: 1, Na+-Ca2+ exchange; 2, passive Ca2+ diffusion; 3, ATP-dependent Ca2+ uptake; 4, exchange of Ca2+ for Na+ which has been actively transported into vesicles by the Na+ pump. The first two methods load all sarcolemmal vesicles with Ca2+, while the latter two methods selectively load inside-out vesicles with Ca2+. We are able to conclude that the dependence of Ca2+ efflux on the external Na+ concentration is similar in inside-out and right-side-out vesicles. Thus the apparent Km(Na+) values (approximately equal to 30 mM) of the Na+-Ca2+ exchanger are similar on the two surfaces of the sarcolemmal membrane. In other experiments, external Na+ inhibited the Na+i-dependent Ca2+ uptake of the total population of vesicles much more potently than that of the inside-out vesicles. Apparently Na+ can compete for the Ca2+ binding site more effectively on the external surface of right-side-out than on the external surface of inside-out vesicles. Thus, although affinities for Na+ or Ca2+ (in the absence of the other ion) appear symmetrical, the interactions between Na+ and Ca2+ at the two sides of the exchanger are not the same. The Na+-Ca2+ exchanger is not a completely symmetrical transport protein.  相似文献   

8.
Plasma membrane vesicles from a glucose-responsive insulinoma exhibited properties consistent with the presence of a membrane Na+/Ca2+ exchange. The exchange was rapid, reversible, and was dependent on the external Ca2+ concentration (Km = 4.1 +/- 1.1 microM). External Na+ inhibited the uptake in a dose-dependent manner (IC50 = 15 mM). Dissipation of the Na+ gradient by 10 microM monensin decreased Na+/Ca2+ exchange from 0.74 +/- 0.17 nmoles/mg protein/s to 0.11 +/- 0.05 nmoles/mg protein/s. Exchange was not influenced by veratridine, tetrodotoxin and ouabain, or by modifiers of cAMP. No effect was seen using the calcium channel blockers, nitrendipine or nifedipine. Glucose had no direct effect on Na+/Ca2+ exchange, while glyceraldehyde, glyceraldehyde-3-phosphate and dihydroxyacetone inhibited the exchange. Na+ induced efflux of calcium was seen in Ca2+ loaded vesicles and was half maximal at [Na+] of 11.1 +/- 0.75 mM. Ca2+ efflux was dependent on [Na+], with a Hill coefficient of 2.7 +/- 0.07 indicating that activation of Ca2+ release involves a minimum of three sites. The electrogenicity of this exchange was demonstrated using the lipophilic cation tetraphenylphosphonium [( 3H]-TPP), a membrane potential sensitive probe. [3H]-TPP uptake increased transiently during Na+/Ca2+ exchange indicating that the exchange generated a membrane potential. These results show that Na+/Ca2+ exchange operates in the beta cell and may be an important regulator of intracellular free Ca2+ concentrations.  相似文献   

9.
Using inside-out vesicles of human red cell membranes, the effects of cytoplasmic Na+ in the range 0-5 mM on ATP-dependent 22Na+ influx (normal efflux) and 86Rb+ efflux (normal influx) were tested. The sodium pump stoichiometry, i.e. the ratio of net 22Na+ influx:86Rb+ efflux was reduced markedly when the cytoplasmic Na+ was reduced to less than 1 mM. Reduction in cytoplasmic Na+ concentration was associated also with a decreased sensitivity of the pump to effects of extracellular Rb+. Thus, extracellular (intravesicular) Rb+ stimulation observed at high ATP concentration and inhibition observed at low ATP concentration were not observed when the cytoplasmic (extravesicular) Na+ concentration was reduced to less than or equal to 0.2 mM. It is suggested that at low cytoplasmic Na+, the pump can operate with less than maximal sites filled with Na+ ions. Under this condition, it is likely that an enzymic step associated with either the ion translocation step or the enzyme's conformational transition becomes rate-limiting.  相似文献   

10.
The effects of extracellular Na+ (Na+o) on cytosolic ionized calcium (Ca2+i) and on calcium and sodium fluxes were measured in monkey kidney cells (LLC-MK2). Ca2+i was measured with aequorin and the ion fluxes with 45Ca and 22Na. Na+-free media rapidly increased Ca2+i from 60 to a maximum of about 700 nM in 2-3 min. After the peak, Ca2+i declined and reached a plateau of about twice the resting Ca2+i. The peak Ca2+i was inversely proportional to Na+o and directly proportional to the extracellular calcium concentration (Ca2+o). On the other hand, a pH of 6.8 reduced and Ca2+o substitution with Sr2+ completely blocked the Ca2+i response to low Na+o. A Na+-free medium stimulated calcium efflux from the cells 4-5-fold, a response which was abolished in the absence of extracellular Ca2+. Na+-free media also stimulated calcium influx and sodium efflux. The cell calcium content, however, was not increased. These results indicate that removal of extracellular Na+ increases Ca2+i by stimulating calcium influx and not by inhibiting calcium efflux; the increased calcium influx takes place on the Na+-Ca2+ antiporter operating in the reverse mode in exchange for sodium efflux. The increased calcium efflux occurs as a consequence of the rise in Ca2+i and presumably takes place on the (Ca2+-Mg2+) ATPase-dependent calcium pump.  相似文献   

11.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

12.
ATP-dependent trapping of [14C]methylamine was demonstrated in vesicles selectively derived from the sinusoidal plasma membrane of rat hepatocytes; activity was lacking in vesicles prepared from the canalicular domain of the plasma membrane of rat hepatocytes. The proton movement was inhibited by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, strophanthidin, vanadate, amiloride, and absence of sodium. 22Na efflux from sinusoidal membrane vesicles increased inversely to extravesicular pH. The results indicate that the sinusoidal plasma membrane of rat hepatocytes contains a Na+/H+ antiport.  相似文献   

13.
The existence of Na+ -dependent Ca2+ transport was investigated in microsomal fractions from the longitudinal smooth muscle of the guinea-pig ileum and from the rat aorta, and its activity was compared with that of the plasmalemmal ATP-dependent Ca2+ pump previously identified in these preparations. The rate of Ca2+ release from plasmalemmal vesicles previously loaded with Ca2+ through the ATP-dependent Ca2+ pump was transiently faster in the presence of 150 mM-NaCl in the medium than in the presence of 150 mM-KCl or -LiCl or 300 mM-sucrose. Na+-loaded vesicles took up Ca2+ when an outwardly directed Na+ gradient was formed across the membrane. The Ca ionophore A23187 induced a rapid release of 85% of the sequestered Ca2+, whereas only 15% was displaced by La3+. Ca2+ accumulated by the Na+-induced Ca2+ transport was released by the addition of NaCl, but not KCl, to the medium. Ca2+ uptake in Na+-loaded vesicles was inhibited in the presence of increasing NaCl concentration in the medium. Half-maximum inhibition was observed with 28 mM-NaCl. Data fitted the Hill equation, with a Hill coefficient (h) of 1.9. Na+-induced Ca2+ uptake was a saturable function of Ca2+ concentration in the medium. Half-maximum activity was obtained with 18 microM-Ca2+ in intestinal-smooth-muscle microsomal fraction and with 50 microM-Ca2+ in aortic microsomal fraction. The results suggest that in these membrane preparations a transmembrane movement of Ca2+ can be driven by a Na+ gradient. However, the Na+-induced Ca2+ transport had a lower capacity, a lower affinity and a slower rate than the ATP-dependent Ca2+ pump.  相似文献   

14.
1. Taurine, but not GABA, beta-alanine and glycine, inhibited Na(+)-dependent Ca2+ uptake in bovine cardiac sarcolemmal membrane vesicles in a dose-dependent manner. 2. The inhibition of Na(+)-dependent Ca2+ uptake was noncompetitive with respect to Ca2+ concentration. 3. The inhibitory effect of taurine on the exchange was also observed in cardiac sarcolemmal vesicles prepared from guinea pig, but not from rat. 4. Taurine did not affect Na(+)-dependent Ca2+ efflux nor ATP-dependent Ca2+ uptake in the bovine cardiac membranes.  相似文献   

15.
The hypothesis that the primary Na+-pump, Na+-ATPase, functions in the plasma membrane (PM) of halotolerant microalga Dunaliella maritima was tested using membrane preparations from this organism enriched with the PM vesicles. The pH profile of ATP hydrolysis catalyzed by the PM fractions exhibited a broad optimum between pH 6 and 9. Hydrolysis in the alkaline range was specifically stimulated by Na+ ions. Maximal sodium dependent ATP hydrolysis was observed at pH 7.5-8.0. On the assumption that the ATP-hydrolysis at alkaline pH values is related to a Na+-ATPase activity, we investigated two ATP-dependent processes, sodium uptake by the PM vesicles and generation of electric potential difference (Deltapsi) across the vesicle membrane. PM vesicles from D. maritima were found to be able to accumulate 22Na+ upon ATP addition, with an optimum at pH 7.5-8.0. The ATP-dependent Na+ accumulation was stimulated by the permeant NO3- anion and the protonophore CCCP, and inhibited by orthovanadate. The sodium accumulation was accompanied by pronounced Deltapsi generation across the vesicle membrane. The data obtained indicate that a primary Na+ pump, an electrogenic Na+-ATPase of the P-type, functions in the PM of marine microalga D. maritima.  相似文献   

16.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. The vesicle preparation contained high, digitalis-sensitive (Na+ + K+)-ATPase activities indicating its origin from the basolateral portion of plasma membrane. The operation of a Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

17.
The plasma membrane ATP-dependent Ca2+ pump and the Na+/Ca2+ exchanger (NCX) are the major means of Ca2+ extrusion in smooth muscle. However, little is known regarding distribution and function of the NCX in guinea pig gastric smooth muscle. The expression pattern and distribution of NCX isoforms suggest a role as a regulator of Ca2+ transport in cells. Na+ pump inhibition and the consequent to removal of K+ caused gradual contraction in fundus. In contrast, the response was significantly less in antrum. Western blotting analysis revealed that NCX1 and NCX2 are the predominant NCX isoforms expressed in stomach, the former was expressed strongly in antrum, whereas the latter displayed greater expression in fundus. Isolated plasma membrane fractions derived from gastric fundus smooth muscle were also investigated to clarify the relationship between NCX protein expression and function. Na+-dependent Ca2+ uptake increased directly with Ca2+ concentration. Ca2+ uptake in Na+-loaded vesicles was markedly elevated in comparison with K+-loaded vesicles. Additionally, Ca2+ uptake by the Na+- or K+-loaded vesicles was substantially higher in the presence of A23187 than in its absence. The result can be explained based on the assumption that Na+ gradients facilitate downhill movement of Ca2+. Na+-dependent Ca2+ uptake was abolished by the monovalent cationic ionophore, monensin. NaCl enhanced Ca2+ efflux from vesicles, and this efflux was significantly inhibited by gramicidin. Results documented evidence that NCX2 isoform functionally contributes to Ca2+ extrusion and maintenance of contraction-relaxation cycle in gastric fundus smooth muscle.  相似文献   

18.
The movement of Ca2+ across the basolateral plasma membrane was determined in purified preparations of this membrane isolated from rabbit proximal and distal convoluted tubules. The ATP-dependent Ca2+ uptake was present in basolateral membranes from both these tubular segments, but the activity was higher in the distal tubules. A very active Na+/Ca2+ exchange system was also demonstrated in the distal-tubular membranes, but in proximal-tubular membranes this exchange system was not demonstrable. The presence of Na+ outside the vesicles gradually inhibited the ATP-dependent Ca2+ uptake in the distal-tubular-membrane preparations, but remained without effect in those from the proximal tubules. The activity of the Na+/Ca2+ exchange system in the distal-tubular membranes was a function of the imposed Na+ gradient. These results suggest that the major differences in the characteristics of Ca2+ transport in the proximal and in the distal tubules are due to the high activity of a Na+/Ca2+ exchange system in the distal tubule and its virtual absence in the proximal tubule.  相似文献   

19.
(Na+ + K+)-ATPase from shark rectal glands reconstituted into lipid vesicles and oriented inside out catalyses an ouabain-sensitive Na+-Na+ exchange in the absence of intravesicular K+ when ATP is added extravesicularly. Intravesicular ouabain inhibited the exchange completely. This was also the case with digitoxigenin added to the vesicles. Intravesicular oligomycin inhibited the Na+-Na+ exchange partly in a fashion which was ATP dependent. The exchange is accompanied by a net hydrolysis of ATP with an apparent Km of 2.5 microM. ADP was found to give no stimulation of the Na+-Na+ exchange, contrarily, ADP inhibited the ATP-dependent exchange of Na+ both at optimal and supraoptimal ATP concentrations. When initial influx and efflux of 22Na was measured and the hydrolysis of ATP concomitantly determined a coupling ratio of 2.8:1.3:1 was found, i.e. 2.8 moles of Na+ were taken up (cellular efflux) and 1.3 moles of Na+ extruded (cellular influx) for each mole of ATP hydrolyzed. The electrogenic Na+-Na+ exchange generated a transmembrane potential which was measured with the fluorescent probe ANS (8-anilino-1-naphthalenesulfonic acid) to be 60 mV positive inside the liposomes (extracellular).  相似文献   

20.
The permeability of inside-out and right-side-out vesicles from erythrocyte membranes to inorganic cations was determined quantitatively. Using 86Rb as a K analog, we have measured the rate constant of 86Rb efflux from vesicles under equilibrium exchange conditions, using a dialysis procedure. The permeability coefficients of the vesicles to Rb are only about an order of magnitude greater than that of whole erythrocytes. Furthermore, we have measured many of the specialized transport systems known to exist in erythrocytes and have shown that glucose, sulfate, ATP-dependent Ca and ATP-dependent Na transport activities are retained by the vesicle membranes. These results suggest that inside-out and right-side-out vesicles can be used effectively to study transport properties of erythrocyte membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号