首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of interleukin (IL)-2 on eosinophil survival and mediator release was investigated in vitro. Human peripheral blood eosinophils were isolated and purified from mildly atopic donors and cultured on albumin-coated wells with different concentrations of IL-2, interferon (IFN)-gamma, and granulocyte-macrophage colony stimulating factor (GM-CSF) and their viability was evaluated after 4 days in culture. Eosinophils were cultured with IL-2 (1000 u/ml), IFN-gamma (1000 u/ml), or GM-CSF (10 ng/ml) for 18 h, or with platelet activating factor (PAF) (10(-6) M) for 20 min, and the release of eosinophil peroxidase (EPO) and IL-6 was measured. Nedocromil sodium (10(-5) M) was added with each of the above cytokines to study the inhibitory effect of this drug on EPO release. A significant increase of EPO release was induced by IL-2, IFN-gamma, and GM-CSF after 18 h in culture. IL-2 as well as IFN-gamma induced a significant IL-6 release from eosinophils. Nedocromil sodium significantly inhibited EPO release from eosinophils induced by IL-2 or PAF. These results show that IL-2 can activate peripheral blood eosinophils to release granule mediators (EPO) and cytokines (IL-6). Taken together with the presence of IL-2 receptors on eosinophils, we conclude that IL-2 is an important mediator in allergic inflammation and a possible target for pharmacological modulation.  相似文献   

2.
Glucocorticoids inhibit cytokine-mediated eosinophil survival   总被引:17,自引:0,他引:17  
Glucocorticoids characteristically induce eosinopenia in vivo and are effective for treating allergic and other eosinophilic disorders. We studied the effect of glucocorticoids on cytokine-induced survival of human eosinophils in vitro. Eosinophils were purified from normal or mildly atopic volunteers by Percoll density gradient and incubated for 4 days in the presence of cytokine plus steroid. Cell viabilities were determined by staining cells with fluorescein diacetate and propidium iodide. In the absence of glucocorticoids, human rIL-5 enhanced eosinophil survival in a dose-dependent manner, from 22 fM for a minimal effect to 2200 fM for maximal effect. When eosinophils were cultured with a submaximal concentration of rIL-5 (220 fM), dexamethasone, methylprednisolone, and hydrocortisone inhibited eosinophil survival in a dose-dependent manner. Inhibition was time-dependent and required at least 2 days' exposure of eosinophils to dexamethasone. Dexamethasone, methylprednisolone, and hydrocortisone at 1000 nM inhibited survival by 88 +/- 2, 66 +/- 9 and 37 +/- 7%. In contrast, estradiol and testosterone (1000 nM) had no effect on eosinophil survival. When eosinophils were incubated with varying concentrations of human rIL-5 and 1000 nM dexamethasone, survival inhibition was reduced at higher concentrations of human rIL-5, and completely abolished by human rIL-5 23,000 fM. Human recombinant granulocyte-macrophage CSF, human rIL-3, and human rIFN-gamma also enhanced eosinophil survival in a dose-dependent manner and dexamethasone (1000 nM) strongly inhibited cell survival when submaximal concentrations of these cytokines were used. The effects of dexamethasone were reversed by higher concentrations of granulocyte-macrophage CSF (10 U/ml) and IL-3 (3 ng/ml). However, even 1000 U/ml IFN-gamma did not overcome dexamethasone inhibition, indicating a difference between the mechanism of eosinophil survival induced by IFN-gamma and other cytokines. These results suggest that glucocorticoids exert a direct, inhibitory effect on eosinophil survival, which may be important in the treatment of allergic and other eosinophilic disorders. Antagonism of this effect by higher amounts of cytokine may be a mechanism for glucocorticoid resistance.  相似文献   

3.
Many recent studies have established the eosinophil as a primary effector cell in the pathology of allergic diseases. However, relatively little is known about the mechanisms by which eosinophils accumulate and are activated at local sites of tissue inflammation in allergic or other eosinophil-dependent pathologic states. Because the adherence of leukocytes to vascular endothelial cells (VEC) is a critical initial event in eosinophil infiltration, we have studied the interaction of purified human eosinophils with cultured human umbilical vein endothelial cells. Treatment of VEC with stimuli known to activate endothelial cells, including purified human IL-1, rTNF-alpha, bacterial endotoxin LPS, and the tumor-promoting phorbol diester 12-O-tetradecanoylphorbol-13-acetate resulted in time- and dose-dependent increases (from two- to fourfold) in adhesiveness for eosinophils. Adherence induced by optimal concentrations of IL-1 (2 U/ml), TNF (1 micrograms/ml), and LPS (1 microgram/ml) is dependent upon the CD18 leukocyte cell surface adherence glycoproteins, because a mAb (60.3) directed against the common beta-subunit of the complex inhibits adherence induced by these stimuli. Several agents directly activated eosinophils to display increased adhesiveness to both VEC and gelatinized plates. The bacterial chemotactic peptide formyl-methionyl-leucyl-phenylalanine (10(-8) to 10(-6) M), TNF (1 to 1000 ng/ml), and 12-O-tetradecanoyl-phorbol-13-acetate (0.3 to 3 ng/ml) all increased eosinophil binding to VEC by two to fivefold. Platelet-activating factor (PAF; 10(-8) to 10(-6) M), but not lyso-PAF, caused approximately a twofold increase in eosinophil binding to both VEC and gelatinized tissue culture plates, suggesting that activation of eosinophils may be responsible for the known ability of PAF to induce eosinophilic responses. These results suggest that the initiation of an eosinophilic infiltrate in vivo can result from activation of endothelial cells, activation of eosinophils, or activation of both cell types.  相似文献   

4.
Leukotriene receptor antagonists, such as montelukast (MK), are currently used to treat rhinitis and asthma, but their anti-inflammatory role in eosinophil inflammation is not well understood. The aim of this study is to investigate the effect of MK on an in vitro model of upper-airway eosinophil inflammation by reducing pro-inflammatory cytokines from both nasal mucosa (NM) and polyp (NP) epithelial cells and reducing eosinophil survival primed by epithelial cell secretions. Epithelial cells were stimulated with fetal bovine serum (FBS) with or without MK for 24 hours, and cytokine concentrations in epithelial secretions were measured by ELISA. After incubating peripheral blood eosinophils with epithelial cell-conditioned media (ECM) with or without MK up to 3 days, eosinophil survival was assessed by Trypan blue dye exclusion. Results are expressed as mean±SEM of cytokine concentration (percent of control) or eosinophil survival (percent). Epithelial cell stimulation increased GM-CSF, IL-6, IL-8, and sICAM-1 secretion in both NM and NP. MK had a significant inhibitory effect on FBS-induced GM-CSF, IL-6, and IL-8 secretion, but not sICAM-1, in both NM and NP. MK also showed an inhibitory effect (p<0.05) on ECM-induced eosinophil survival from both NM (from 10(-5)M to 10(-7)M, n=7) and NP (at 10(-5)M, n=7), after 3 days of incubation. These anti-inflammatory effects on epithelial cell cytokine secretion and on eosinophil survival suggest that montelukast may contribute to the reduction of eosinophilic inflammation in upper-airway inflammatory diseases such as rhinitis and nasal polyposis.  相似文献   

5.
Glucocorticoids block the localized accumulation of leukocytes as sites of inflammation by preventing their adherence to vascular endothelium. This implies that glucocorticoids are acting either on the leukocytes, endothelium, or cells which produce adherence-promoting factors (such as interleukin 1 (IL-1)). Previous studies have shown that dexamethasone (DEX) treatment of either polymorphonuclear leukocytes (PMN) or human umbilical vein vascular endothelial cells (VEC) or both in vitro does not prevent adherence induced by thrombin or formylmethionyl-leucyl-phenylalanine (f-met peptide). We now show that pretreatment of PMN and/or VEC for 24 hr with 0.1 microM DEX had no effect on adherence of PMN to VEC activated with IL-1 (2 U/ml), lipopolysaccharide (1 microgram/ml), or 12-O-tetradecanoylphorbol-13-acetate (30 ng/ml) suggesting that glucocorticoids may inhibit adherence in vivo by blocking formation of IL-1 and other adherence-inducing stimuli. We have recently established that cultured human lung fragments produce IL-1 in vitro. To investigate whether glucocorticoids could inhibit the production of adherence-inducing factors, we examined the effect of glucocorticoids on IL-1 production from human lung tissue. Treatment of human lung fragments in vitro for 18 hr with glucocorticoids such as DEX and hydrocortisone resulted in dose dependent inhibition of IL-1 production; these and other glucocorticoids, at concentrations ranging between 0.1 and 1 microM, produced greater than 50% inhibition of IL-1 release. Nonglucocorticoid steroids including testosterone and beta-estradiol (1 microM) had no effect. Inhibition of IL-1 production occurred after a lag period 5 of 16 hr, and the relative glucocorticoid potencies agreed with their known anti-inflammatory potencies in vivo (beta-methasone approximately triamcinolone acetonide greater than DEX greater than fludrocortisone greater than prednisolone greater than hydrocortisone). Inhibition of IL-1 production in vivo may, in part, explain the remarkable ability of glucocorticoids to prevent the adherence of leukocytes to endothelium and their accumulation at an inflammatory site.  相似文献   

6.
Human interleukin (IL)-5 receptors were characterized by means of binding studies using bioactive 125I-labeled IL-5. Of purified primary myeloid cells, eosinophils and basophils but not neutrophils or monocytes expressed surface receptors for IL-5. Binding studies showed that eosinophils expressed a single class of high affinity receptors (Ka = 1.2 x 10(10) M-1) with the number of receptors being small (less than 1000 receptors/cell) and varying between individuals. Among several cell lines examined only HL-60 cells showed detectable IL-5 receptors which were small in numbers (200 receptors/cell) and also bound 125I-IL-5 with high affinity. The binding of IL-5 was rapid at 37 degrees C while requiring several hours to reach equilibrium at 4 degrees C. Specificity studies revealed that the two other human eosinophilopoietic cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF) inhibited the binding of 125I-IL-5 to eosinophils. No competition was observed by other eosinophil activating or nonactivating cytokines. The inhibition of 125I-IL-5 binding by IL-3 and GM-CSF was partial up to a concentration of competitor of 10(-7) M with GM-CSF consistently being the stronger competitor. Converse experiments using IL-5 as a competitor revealed that this cytokine inhibited the binding of 125I-IL-3 and of 125I-GM-CSF in some but not all the individuals tested, perhaps reflecting eosinophil heterogeneity in vivo. Cross-linking experiments on HL-60 cells demonstrated two IL-5-containing complexes of Mr 150,000 and Mr 80,000 both of which were inhibited by GM-CSF. The competition between IL-5, IL-3, and GM-CSF on the surface of mature eosinophils may represent a unifying mechanism that may help explain the common biological effects of these three eosinophilopoietic cytokines on eosinophil function. This unique pattern of competition may also be beneficial to the host by preventing excessive eosinophil stimulation.  相似文献   

7.
Prolonged eosinophil survival is an essential step in the late and chronic phases of allergic inflammation and is regulated by the eosinophil survival cytokines. Our work has demonstrated that tumour necrosis factor (TNF)-alpha enhances survival (Trypan blue exclusion test) of human peripheral blood eosinophils from mildly allergic patients in a dose-dependent manner. The survival activity of TNF-alpha was inhibited by anti-TNF-RI, anti-TNF-RII antagonist antibodies and anti-granulocyte-monocyte colony-stimulating factor (GM-CSF) neutralizing antibodies but not by anti-interleukin (IL)-3 or anti-IL-5 antibodies. Furthermore, TNF-alpha-induced GM-CSF release from eosinophils. Anti-TNF-alpha antibodies also inhibited GM-CSF release from eosinophils induced by rat mast cell sonicate, which enhances eosinophil survival. To define the signal transduction pathway involved in GM-CSF production, eosinophils were incubated either with various mitogen-activated protein kinases (MAPK) inhibitors (MEK, JNK, P38), or Cyclosporin A (calcineurin inhibitor), or MG-132 (proteasome inhibitor). Only the proteasome inhibitor significantly decreased both TNF-alpha-enhanced eosinophil survival (from 38.1+/-4.1% to 13.3+/-1.4%) and GM-CSF release (from 6.2+/-0.7 pg/ml to 0.3+/-0.1 pg/ml). TNF-alpha also induced nuclear factor-kappaB (NF-kappaB) translocation to the nucleus, an essential step in GM-CSF mRNA production. All these findings provide evidence that NF-kappaB is involved in TNF-alpha-enhanced eosinophil survival through the regulation of GM-CSF production by eosinophils.  相似文献   

8.
Airway eosinophilia plays a major role in the pathogenesis of asthma with the inhibition of apoptosis by GM-CSF and IL-5 proposed as a mechanism underlying prolonged eosinophil survival. In vivo and ex vivo studies have indicated the capacity of interventions that drive human eosinophil apoptosis to promote the resolution of inflammation. Far less is known about the impact of transendothelial migration on eosinophil survival, in particular, the capacity of endothelial cell-derived factors to contribute toward the apoptosis-resistant phenotype characteristic of airway-resident eosinophils. We examined the effects of conditioned medium from human pulmonary artery endothelial cells (HPAEC-CM) on eosinophil apoptosis in vitro. HPAEC-CM inhibited eosinophil, but not neutrophil apoptosis. This effect was specific to HPAECs and comparable in efficacy to the survival effects of GM-CSF and IL-5. The HPAEC survival factor was shown, on the basis of GM-CSF, IL-5, and IL-3 detection assays, Ab neutralization, and sensitivity to PI3K inhibition, to be clearly discrete from these factors. Gel filtration of HPAEC-CM revealed a peak of eosinophil survival activity at 8-12 kDa, and PCR confirmed the presence of mRNA for CCL5, CCL11, CCL24, CCL26, and CCL27 in the HPAECs. The CCR3 antagonist GW782415 caused a major inhibition of the HPAEC-CM-induced survival effect, and Ab neutralization of individual CCR3 chemokines revealed CCL11 as the major survival factor present in the HPAEC-CM. Furthermore, chemokine Ab arrays demonstrated up-regulation of CCL11 in HPAEC-CM. These data demonstrate the capacity of HPAECs to generate CCR3 agonists and the ability of CCL11 to inhibit human eosinophil apoptosis.  相似文献   

9.
Medicinal interventions of limited efficacy are currently available for the treatment of glioblastoma multiforme (GBM), the most common and lethal primary brain tumor in adults. The eosinophil is a pivotal immune cell in the pathobiology of atopic disease that is also found to accumulate in certain tumor tissues. Inverse associations between atopy and GBM risk suggest that the eosinophil may play a functional role in certain tumor immune responses. To assess the potential interactions between eosinophils and GBM, we cultured human primary blood eosinophils with two separate human GBM-derived cell lines (A172, U87-MG) or conditioned media generated in the presence or absence of TNF-α. Results demonstrated differential eosinophil adhesion and increased survival in response to coculture with GBM cell lines. Eosinophil responses to GBM cell line-conditioned media included increased survival, activation, CD11b expression, and S100A9 release. Addition of GM-CSF neutralizing Abs to GBM cell cultures or conditioned media reduced eosinophil adhesion, survival, and activation, linking tumor cell-derived GM-CSF to the functions of eosinophils in the tumor microenvironment. Dexamethasone, which has been reported to inhibit eosinophil recruitment and shrink GBM lesions on contrast-enhanced scans, reduced the production of tumor cell-derived GM-CSF. Furthermore, culture of GBM cells in eosinophil-conditioned media increased tumor cell viability, and generation of eosinophil-conditioned media in the presence of GM-CSF enhanced the effect. These data support the idea of a paracrine loop between GM-CSF-producing tumors and eosinophil-derived growth factors in tumor promotion/progression.  相似文献   

10.
GM-CSF plays an important role in inflammation by promoting the production, activation, and survival of granulocytes and macrophages. In this study, GM-CSF knockout (GM-CSF(-/-)) mice were used to investigate the role of GM-CSF in a model of allergic airway inflammation. In allergic GM-CSF(-/-) mice, eosinophil recruitment to the airways showed a striking pattern, with eosinophils present in perivascular areas, but almost completely absent in peribronchial areas, whereas in wild-type mice, eosinophil infiltration appeared in both areas. In the GM-CSF(-/-) mice, mucus production in the airways was also reduced, and eosinophil numbers were markedly reduced in the bronchoalveolar lavage (BAL)(3) fluid. IL-5 production was reduced in the lung tissue and BAL fluid of GM-CSF(-/-) mice, but IL-4 and IL-13 production, airway hyperresponsiveness, and serum IgE levels were not affected. The presence of eosinophils in perivascular but not peribronchial regions was suggestive of a cell migration defect in the airways of GM-CSF(-/-) mice. The CCR3 agonists CCL5 (RANTES) and CCL11 (eotaxin-1) were expressed at similar levels in GM-CSF(-/-) and wild-type mice. However, IFN-gamma mRNA and protein were increased in the lung tissue and BAL fluid in GM-CSF(-/-) mice, as were mRNA levels of the IFN-gamma-inducible chemokines CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (I-Tac). Interestingly, these IFN-gamma-inducible chemokines are natural antagonists of CCR3, suggesting that their overproduction in GM-CSF(-/-) mice contributes to the lack of airway eosinophils. These findings demonstrate distinctive abnormalities to a model of allergic asthma in the absence of GM-CSF.  相似文献   

11.
12.
Divergent effect of mometasone on human eosinophil and neutrophil apoptosis   总被引:5,自引:0,他引:5  
Mometasone is a potent synthetic glucocorticoid, which is under development as an inhaled preparation for the treatment of asthma. Previous studies have suggested that glucocorticoids have direct effects on human eosinophil and neutrophil apoptosis. The present study was designed to characterize the effects of mometasone on constitutive apoptosis and cytokine-afforded survival in isolated human eosinophils and neutrophils. The isolated eosinophils or neutrophils were cultured in vitro, and apoptosis was assessed by flow cytometric analysis of relative DNA content, by annexin-V binding and morphological analysis. Mometasone enhanced constitutive human eosinophil apoptosis in a concentration-dependent manner. The maximal enhancement of eosinophil apoptosis was 2.1-fold with an EC(50) value of 5.63 +/- 2.33 nM. This enhancing effect was reversed by the glucocorticoid receptor antagonist, mifepristone. In the presence of added cytokines, mometasone reversed tumor necrosis factor -alpha-induced eosinophil survival but not that afforded by interleukin -5. In contrast, mometasone inhibited human neutrophil apoptosis in a concentration-dependent manner. The maximal inhibition of neutrophil apoptosis was 50% with an EC(50) value of 0.17 +/- 0.03 nM. The inhibitory effect was partly reversed by mifepristone. In the presence of added cytokines, mometasone further enhanced neutrophil survival induced by the granulocyte-macrophage colony-stimulating factor and leukotriene B(4). The present data suggests that mometasone has opposite effects on apoptosis of human eosinophils and neutrophils at clinically relevant drug concentrations via an effect on glucocorticoid receptor.  相似文献   

13.
Short-lived peripheral blood eosinophils are recruited to the lungs of asthmatics after allergen challenge, where they become long-lived effector cells central to disease pathophysiology. GM-CSF is an important cytokine which promotes eosinophil differentiation, function, and survival after transit into the lung. In human eosinophils, GM-CSF production is controlled by regulated mRNA stability mediated by the 3' untranslated region, AU-rich elements (ARE). We identified human Y box-binding factor 1 (YB-1) as a GM-CSF mRNA ARE-specific binding protein that is capable of enhancing GM-CSF-dependent survival of eosinophils. Using a transfection system that mimics GM-CSF metabolism in eosinophils, we have shown that transduced YB-1 stabilized GM-CSF mRNA in an ARE-dependent mechanism, causing increased GM-CSF production and enhanced in vitro survival. RNA EMSAs indicate that YB-1 interacts with the GM-CSF mRNA through its 3' untranslated region ARE. In addition, endogenous GM-CSF mRNA coimmunoprecipitates with endogenous YB-1 protein in activated eosinophils but not resting cells. Thus, we propose a model whereby activation of eosinophils leads to YB-1 binding to and stabilization of GM-CSF mRNA, ultimately resulting in GM-CSF release and prolonged eosinophil survival.  相似文献   

14.
Allergic diseases such as asthma are characterized by tissue eosinophilia induced by the combined effects of chemoattractants and cytokines. Lipid mediators are a major class of endogenous chemoattractants, among which 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the most potent for human eosinophils. In this study, we investigated the effects of 5-oxo-ETE on eosinophil survival by flow cytometry. We found that this compound could promote eosinophil survival in the presence of small numbers of contaminating monocytes, but not in their absence. The conditioned medium from monocytes treated for 24 h with 5-oxo-ETE also strongly promoted eosinophil survival, whereas the medium from vehicle-treated monocytes had no effect. An antibody against the granulocyte/macrophage colony-stimulating factor (GM-CSF) completely blocked the response of eosinophils to the conditioned medium from 5-oxo-ETE-treated monocytes, whereas an antibody against interleukin-5 had no effect. Furthermore, 5-oxo-ETE stimulated the release of GM-CSF from cultured monocytes in amounts compatible with eosinophil survival activity, with a maximal effect being observed after 24 h. This effect was concentration-dependent and could be observed at concentrations in the picomolar range. 5-Oxo-ETE and leukotriene B(4) had similar effects on GM-CSF release at low concentrations, but 5-oxo-ETE induced a much stronger response at concentrations of 10 nm or higher. This is the first report that 5-oxo-ETE can induce the release of any cytokine, suggesting that it could be an important mediator in allergic and other inflammatory diseases due both to its chemoattractant properties and to its potent effects on the synthesis of the survival factor GM-CSF.  相似文献   

15.
Asthma is characterized by an airway inflammatory infiltrate that is rich in eosinophilic leukocytes. Cellular fibronectin and VCAM-1, ligands for alpha4 integrins, are enriched in the fluid of airways of allergic patients subjected to Ag challenge. We therefore hypothesized that ligands of alpha4 integrins can promote eosinophil survival independent of cell adhesion. Cellular fibronectin and VCAM-1 increased viability of human peripheral blood eosinophil in a dose- and time-dependant manner whether the ligand was coated on the culture well or added to the medium at the beginning of the assay. Eosinophils cultured with cellular fibronectin were not adherent to the bottom of culture wells after 3 days. Treatment with mAb Fib 30 to beta7, but not mAb P4C10 or TS2/16 to beta1, increased eosinophil survival. The increased survival of eosinophils incubated with Fib 30 was blocked by Fab fragments of another anti-beta7 mAb, Fib 504. Eosinophils incubated with soluble cellular fibronectin or mAb Fib 30 for 6 h demonstrated a higher level of GM-CSF mRNA than eosinophils incubated with medium alone. Addition of neutralizing mAb to GM-CSF during incubation, but not mAbs to IL-3 or IL-5, reduced the enhancement of eosinophil survival by soluble cellular fibronectin or mAb Fib 30 to control levels. Thus, viability of eosinophils incubated with cellular fibronectin or VCAM-1 is due to engagement, probably followed by cross-linking, of alpha4beta7 by soluble ligand (or mAb) that stimulates autocrine production of GM-CSF and promotes eosinophil survival.  相似文献   

16.
The low-affinity IgG Fc receptor, FcgammaRII (CD32), mediates various effector functions of lymphoid and myeloid cells and is the major IgG Fc receptor expressed by human eosinophils. We investigated whether FcgammaRII regulates both cell survival and death of human eosinophils. When cultured in vitro without growth factors, most eosinophils undergo apoptosis within 96 h. Ligation of FcgammaRII by anti-CD32 mAb in solution inhibited eosinophil apoptosis and prolonged survival in the absence of growth factors. Cross-linking of human IgG bound to FcgammaRII by anti-human IgG Ab or of unoccupied FcgammaRII by aggregated human IgG also prolonged eosinophil survival. The enhanced survival with anti-CD32 mAb was inhibited by anti-granulocyte-macrophage-CSF (GM-CSF) mAb, suggesting that autocrine production of GM-CSF by eosinophils mediated survival. In fact, mRNA for GM-CSF was detected in eosinophils cultured with anti-CD32 mAb. In contrast to mAb or ligands in solution, anti-CD32 mAb or human IgG, when immobilized onto tissue culture plates, facilitated eosinophil cell death even in the presence of IL-5. Cell death induced by these immobilized ligands was accompanied by DNA fragmentation and was inhibited when eosinophil beta2 integrin was blocked by anti-CD18 mAb, suggesting that beta2 integrins play a key role in initiating eosinophil apoptosis. Thus, FcgammaRII may pivotally regulate both survival and death of eosinophils, depending on the manner of receptor ligation and beta2 integrin involvement. Moreover, the FcgammaRII could provide a novel mechanism to control the number of eosinophils at inflammation sites in human diseases.  相似文献   

17.
The priming of eosinophils by cytokines leading to augmented response to chemoattractants and degranulating stimuli is a characteristic feature of eosinophils in the course of allergic inflammation and asthma. Actin reorganization and integrin activation are implicated in eosinophil priming by GM-CSF, but their molecular mechanism of action is unknown. In this regard, we investigated the role of L-plastin, an eosinophil phosphoprotein that we identified from eosinophil proteome analysis. Phosphoproteomic analysis demonstrated the upregulation of phosphorylated L-plastin after eosinophil stimulation with GM-CSF. Additionally, coimmunoprecipitation studies demonstrated a complex formation of phosphorylated L-plastin with protein kinase CβII (PKCβII), GM-CSF receptor α-chain, and two actin-associated proteins, paxilin and cofilin. Inhibition of PKCβII with 4,5-bis(4-fluoroanilino)phtalimide or PKCβII-specific small interfering RNA blocked GM-CSF-induced phosphorylation of L-plastin. Furthermore, flow cytometric analysis also showed an upregulation of α(M)β(2) integrin, which was sensitive to PKCβII inhibition. In chemotaxis assay, GM-CSF treatment allowed eosinophils to respond to lower concentrations of eotaxin, which was abrogated by the above-mentioned PKCβII inhibitors. Similarly, inhibition of PKCβII blocked GM-CSF induced priming for degranulation as assessed by release of eosinophil cationic protein and eosinophil peroxidase in response to eotaxin. Importantly, eosinophil stimulation with a synthetic L-plastin peptide (residues 2-19) phosphorylated on Ser(5) upregulated α(M)β(2) integrin expression and increased eosinophil migration in response to eotaxin independent of GM-CSF stimulation. Our results establish a causative role for PKCβII and L-plastin in linking GM-CSF-induced eosinophil priming for chemotaxis and degranulation to signaling events associated with integrin activation via induction of PKCβII-mediated L-plastin phosphorylation.  相似文献   

18.
We studied the role of naturally occurring eosinophil chemotactic factors on leukotriene (LT)C4 production from highly purified (87.1 +/- 2.4%) normodense eosinophils. Platelet activating factor (PAF) directly induced LTC4 production from eosinophils in a dose (10(-9) to 10(-5) M) and a time-dependent manner. PAF (10(-5) M) induced 0.74 +/- 0.08 ng of LTC4 production/10(6) eosinophils. However, lyso-PAF, eosinophil chemotactic factor of anaphylaxis, and LTB4 failed to induce LTC4 production within the tested range. Furthermore, the pre-incubation of eosinophils with 5 micrograms/ml of cytochalasin B did not alter the chemotactic factor-induced LTC4 production. When eosinophils were stimulated by the submaximal concentration (1 microgram/ml) of calcium ionophore A23187, the pre-incubation of eosinophils with 10(-6) M or 10(-5) M of PAF, or 10(-5) M of eosinophil chemotactic factor of anaphylaxis significantly enhanced LTC4 production up to 163.9 +/- 17.5% (p less than 0.05), 279.2 +/- 32.9% (p less than 0.01) and 165.2 +/- 21.2% (p less than 0.05) of the control, respectively. However, the pre-incubation with lyso-PAF or LTB4 failed to enhance A23187-induced LTC4 production. The pre-incubation of eosinophils with phosphatidyl serine also failed to enhance A23187-induced LTC4 production. However, the direct stimulation of protein kinase C by PMA enhanced the submaximal concentration of A23187-induced LTC4 production from eosinophils up to 179.5 +/- 20.9% (p less than 0.05) of the control. Our findings indicate that PAF and ECF-A work not only as chemotactic factors but also induce a functionally active state of eosinophils probably through their post-receptor mechanisms, and contribute to the inflammatory processes.  相似文献   

19.

Background

Although antihistamines and topical corticosteroids are used in combination to treat allergic rhinitis, their additive effect has not been yet demonstrated. The aim was investigate the antiinflammatory additive effect of mometasone and desloratadine on cytokine and sICAM-1 secretion by epithelial cells, and on eosinophil survival stimulated by human epithelial cells secretions from nasal mucosa and polyps.

Methods

Epithelial cells obtained from nasal mucosa or polyps were stimulated with 10% fetal bovine serum in presence of mometasone (10-11M-10-5M) with/without desloratadine (10-5M). Cytokine and sICAM-1 concentrations in supernatants were measured by ELISA. Peripheral blood eosinophils were incubated during 4 days with epithelial cell secretions with (10-11M-10-5M) and/or desloratadine (10-5M) and survival assessed by Trypan blue. Results are expressed as percentage (mean ± SEM) compared to control.

Results

Fetal bovine serum stimulated IL-6, IL-8, GM-CSF and sICAM-1 secretion. In mucosa and polyp epithelial cells, mometasone inhibited this induced secretion while desloratadine inhibited IL-6 and IL-8. The combination of 10-5M desloratadine and 10-9M mometasone reduced IL-6 secretion (48 ± 11%, p < 0.05) greater extent than mometasone alone (68 ± 10%) compared to control (100%). Epithelial cell secretions induced eosinophil survival from day 1 to 4, this effect being inhibited by mometasone. At day 4, the combination of mometasone (10-11M) and desloratadine (10-5M) provoked an increased inhibition of eosinophil survival induced by cell secretions (27 ± 5%, p < 0.01) than mometasone (44 ± 7%) or desloratadine (46 ± 7%) alone.

Conclusions

These results suggest that the combination of desloratadine and mometasone furoate have a greater antinflammatory effect in an in vitro model of eosinophil inflammation than those drugs administered alone.  相似文献   

20.
Glucocorticoids are effective drugs for eosinophil-related disorders, such as asthma and allergy. Previous studies have demonstrated that glucocorticoids increase eosinophil apoptosis and block the survival effect of submaximal concentrations of interleukin-5 (IL-5). We investigated the effect of glucocorticoids on eosinophil survival in the presence of a higher concentration of IL-5 (1 ng/ml), comparable to IL-5 levels in bronchoalveolar lavage and sputum specimens from patients with asthma. In contrast to incubation in the presence of submaximal concentrations of IL-5, the addition of dexamethasone (DEX) to media containing 1 ng/ml IL-5 led to a significant increase in eosinophil cell viability from 58 ± 6.9% to 87 ± 2.4% (p < 0.005) after 72 hours in culture. We found that RU486 blocked the DEX effect on cell viability confirming that glucocorticoid receptor functions are required. We investigated the possibility that the glucocorticoid enhancement of eosinophil survival may be due to an effect on IL-5 receptor expression. Our results show that the IL-5 associated decrease in IL-5 receptor -subunit expression was blocked significantly after 24 hrs in culture with media containing IL-5 plus DEX compared to IL-5 alone. It is tempting to speculate that the observed glucocorticoid enhancement of eosinophil survival in the presence of elevated concentrations of IL-5 could be a mechanism that contributes to glucocorticoid resistance in asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号