首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
miR-34基因家族的分子进化   总被引:1,自引:0,他引:1  
根据miRNA基因在进化中高度保守的特点,利用生物信息学方法在目前已测序的动物物种中搜寻参与哺乳动物早期发育调控的mir-34基因的同源序列,在33个不同的动物物种中获得了miR-34基因的54条同源序列,其中18条为新发现的序列。表明miR-34是高度保守的,广泛存在于后生动物中。目前发现的mir-34基因80%位于基因间隔区,少数位于蛋白编码基因的内含子区和3′UTR上。不同动物中,mir-34基因成熟序列的同源性为68%,前体序列为38.89%。在无脊椎动物中只有一个mir-34,而在几乎所有的脊椎动物中都有mir-34a,mir-34b,mir-34c,形成miR-34基因家族。系统进化分析表明,脊椎动物中miR-34基因家族是通过基因的串联和局部重复形成的,这个过程中伴随着个别碱基的变异。  相似文献   

3.
李英  张亚平 《遗传学报》2006,33(7):590-597
在大鼠基因组数据库中搜索得到两个泌乳刺激素基因家族的新成员。进一步分析显示该基因家族起源于啮齿目和其他哺乳动物分歧之后,而且大部分基因座位的重排在大、小鼠分歧之前已经完成。但PL-Ⅰ和PL-Ⅱ基因簇却是例外,它们在基因树上以物种特异的方式聚类。结合基因转换的检验、染色体上相对位置比较和基因重复时间估计的结果,认为啮齿目PL-Ⅰ和PL-Ⅱ基因是物种特异的,它们由一系列在大、小鼠分歧之后发生的基因重复事件形成。结果还揭示了在啮齿目泌乳刺激素基因家族进化过程中持续不断的发生了基因重复和基因分化事件。  相似文献   

4.
In this study, we identified two novel members of prolactin gene family in rat by blast searches against the published genomic database. A further analysis showed that gene duplications leading to PRL gene family in rodents occurred after rodents diverged from other mammals. Major reorganization of the gene loci in rodents was largely completed before the split of rat and mouse. But PL-I and PL-II genes are the exceptions, which have clustered in a species-specific manner in the phylogenetic tree. By combining results from gene conversion testing, relative chromosomal location comparison and estimated time for gene duplication, we believe that rodent PL-I and PL-II genes are species-specific and are the results of serial duplications which occurred after the divergence of mouse and rat. Our analysis also reveals that continual gene duplication and divergence occurred during the evolution of rodent PRL gene family.  相似文献   

5.
王华  张正线 《遗传学报》1995,22(6):413-423
葡萄糖转运蛋白是一个在结构上相似功能上不同的多基因家族(GLUT1-GLUT5)。由于这一组蛋白和体内的葡萄糖利用有关,因此被认为是糖尿病胰岛素抵抗(抗性)的一个候选基因。本文比较了不同种生物这一基因家族的氨基酸和核苷酸顺序;推测了亲水性和疏水性分布;计算了蛋白质和核苷酸的进化距离,并在此基础上构建了分子进化树。研究表明:这一基因家族具有高度的同源性、极为相似的亲水性和疏水性分布以及结构的对称性。提示这一基因家族起源于一个共同的祖先并可能通过基因的重复而形成。这一进化机制可能有利于氨基酸结构的稳定及抵抗突变的作用。由于邻元法构建的进化树其分支长度存在差异,提示在这一基因家族的进化过程中,各分支上的进化速率并不相同。蛋白质进化距离和核苷酸进化距离所构建进化树的差异提示了在基因组中可能存在隐匿替换。两种方法构建的进化树都提示了GLUT1、3、4在结构和功能上要更为保守。  相似文献   

6.
miR-124基因家族的分子进化与靶基因预测   总被引:1,自引:0,他引:1  
MicroRNA (miRNA)是一类内源基因编码的长度约22个核苷酸的非编码单链RNA分子.依据其在进化中高度保守的特点,利用生物信息学方法在目前已测序的物种中搜寻在哺乳动物中枢神经系统特异表达的miR-124基因的同源序列.在80个不同的动物物种中找到了150条miR-124基因的同源序列,其中27条为新发现的序列.目前发现的miR-124基因中,除线虫cel-mir-124和小鼠mmu-mir-124-2位于内含子之外,其他均位于基因间隔区.不同物种中,miR-124基因成熟序列的相似性为89.54%,前体序列为41.98%.miR-124基因在大多数无脊椎动物中为单拷贝,而在脊椎动物中大多为多拷贝,表明从无脊推动物到脊椎动物进化过程中miR-124基因发生了重复.靶基因预测结果显示,在人、小鼠和大鼠等哺乳动物中mir-124大多靶位点也是保守的.  相似文献   

7.
The metallothionein (MT) gene superfamily consists of metal-binding proteins involved in various metal detoxification and storage mechanisms. The evolution of this gene family in vertebrates has mostly been studied in mammals using sparse taxon or gene sampling. Genomic databases and available data on MT protein function and expression allow a better understanding of the evolution and functional divergence of the different MT types. We recovered 77 MT coding sequences from 20 representative vertebrates with annotated complete genomes. We found multiple MT genes, also in reptiles, which were thought to have only one MT type. Phylogenetic and synteny analyses indicate the existence of a eutherian MT1 and MT2, a tetrapod MT3, an amniote MT4, and fish MT. The optimal gene-tree/species-tree reconciliation analyses identified the best root in the fish clade. Functional analyses reveal variation in hydropathic index among protein domains, likely correlated with their distinct flexibility and metal affinity. Analyses of functional divergence identified amino acid sites correlated with functional divergence among MT types. Uncovering the number of genes and sites possibly correlated with functional divergence will help to design cost-effective MT functional and gene expression studies. This will permit further understanding of the distinct roles and specificity of these proteins and to properly target specific MT for different types of functional studies. Therefore, this work presents a critical background on the molecular evolution and functional divergence of vertebrate MTs to carry out further detailed studies on the relationship between heavy metal metabolism and tolerances among vertebrates.  相似文献   

8.
Evolution of the Hedgehog Gene Family   总被引:6,自引:0,他引:6       下载免费PDF全文
S. Kumar  K. A. Balczarek    Z. C. Lai 《Genetics》1996,142(3):965-972
Effective intercellular communication is an important feature in the development of multicellular organisms. Secreted hedgehog (hh) protein is essential for both long- and short-range cellular signaling required for body pattern formation in animals. In a molecular evolutionary study, we find that the vertebrate homologs of the Drosophila hh gene arose by two gene duplications: the first gave rise to Desert hh, whereas the second produced the Indian and Sonic hh genes. Both duplications occurred before the emergence of vertebrates and probably before the evolution of chordates. The amino-terminal fragment of the hh precursor, crucial in long- and short-range intercellular communication, evolves two to four times slower than the carboxyl-terminal fragment in both Drosophila hh and its vertebrate homologues, suggesting conservation of mechanism of hh action in animals. A majority of amino acid substitutions in the amino- and carboxyl-terminal fragments are conservative, but the carboxyl-terminal domain has undergone extensive insertion-deletion events while maintaining its autocleavage protease activity. Our results point to similarity of evolutionary constraints among sites of Drosophila and vertebrate hh homologs and suggest some future directions for understanding the role of hh genes in the evolution of developmental complexity in animals.  相似文献   

9.
Molecular Evolution of the Myeloperoxidase Family   总被引:4,自引:0,他引:4  
Animal myeloperoxidase and its relatives constitute a diverse protein family, which includes myeloperoxidase, eosinophil peroxidase, thyroid peroxidase, salivary peroxidase, lactoperoxidase, ovoperoxidase, peroxidasin, peroxinectin, cyclooxygenase, and others. The members of this protein family share a catalytic domain of about 500 amino acid residues in length, although some members have distinctive mosaic structures. To investigate the evolution of the protein family, we performed a comparative analysis of its members, using the amino acid sequences and the coordinate data available today. The results obtained in this study are as follows: (1) 60 amino acid sequences belonging to this family were collected by database searching. We found a new member of the myeloperoxidase family derived from a bacterium. This is the first report of a bacterial member of this family. (2) An unrooted phylogenetic tree of the family was constructed according to the alignment. Considering the branching pattern in the obtained phylogenetic tree, together with the mosaic features in the primary structures, 60 members of the myeloperoxidase family were classified into 16 subfamilies. (3) We found two molecular features that distinguish cyclooxygenase from the other members of the protein family. (4) Several structurally deviated segments were identified by a structural comparison between cyclooxygenase and myeloperoxidase. Some of the segments seemed to be associated with the functional and/or structural differences between the enzymes. Received: 25 January 2000 / Accepted: 19 July 2000  相似文献   

10.
大豆miR-171基因家族的进化与功能分析   总被引:1,自引:0,他引:1  
运用生物信息学方法在miRBase搜索大豆miR-171(gma-miR-171)基因家族的序列,分析gma-miR-171序列的进化特征并预测其靶基因。结果表明,在miRBase中共搜索到21条gma-miR-171基因家族序列。序列分析发现,gma-miR-171基因家族序列保守性较差,只有2个碱基完全保守。对gma-miR-171基因进行定位,21个成员分散在12条染色体上,其中Chr06上gma-miR-171基因最多,共4个。进化分析表明,位于同一条染色体上的gma-miR-171基因没有表现出较近的亲缘关系。靶基因预测获得14个gma-miR-171基因家族的靶基因,包括蛋白激酶、磷酸酶、输出蛋白、转录因子等,说明gma-miR-171基因家族在大豆中具有广泛的调控功能。  相似文献   

11.
We have carried out an evolutionary study of the two proteins encoded by the RNA 3 from members of the plant virus family Bromoviridae. Using maximum likelihood methods, we have inferred the patterns of amino acid substitution that better explain the diversification of this viral family. The results indicate that the molecular evolution of this family was rather complex, with each protein evolving at different rates and according to different patterns of amino acid substitution. These differences include different amino acid equilibrium frequencies, heterogeneity in substitution rates among sites, and covariation among sites. Despite these differences, the model of protein evolution that better fits both proteins is one specifically proposed for the evolution of globular proteins. We also found evidence for coevolution between domains of these two proteins. Finally, our analyses suggest that the molecular clock hypothesis does not hold, since different lineages evolved at different rates. The implications of these results for the taxonomy of this important family of plant viruses are discussed. [Reviewing Editor: Dr. Martin Kreitman and Dr. James Bull]  相似文献   

12.
Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions.  相似文献   

13.
SYNOPSIS. Growth hormone, prolactin and chorionic somatomammotropin(placental lactogen) area family of hormones that are relatedby function, immunochemistry and structure. Because of the structuralsimilarities between these hormones, it was proposed that thecorresponding genes were derived from a common precursor geneby duplication and sequence divergence. Comparisons of the mRNAsequences and chromosomal genes for these hormones from severalspecies provide additional support for the model of their commonancestry and indications of how the precursor genewas formed.The diversification of these three genes has involved changesin codon choices thataffect the overall G-C content of the genes,alterations in the sizes of introns with conservedexon-intronboundaries and concerted evolutionary mechanisms with duplicatedgrowth hormone andhorionic somatomammotropin genes in humans.The precursor gene appears to have evolved by the fourfold duplicationof one exon element and the separate insertion of an exon encodinga different protein domain. Finally, there also appears to havebeen the separate insertion of sequences containing a promoterelement and a potential glucocorticoid regulatory element.  相似文献   

14.
15.
microRNAs(miRNA)是真核生物中一类长度约为21~25个核苷酸的非编码小分子RNA,在转录后水平调控基因的表达。该文在miRBase中搜索后生动物的mir-9基因序列。47个物种中共搜索到120条mir-9基因序列,说明mir-9基因家族广泛存在于不同物种中。基因定位显示86%的mir-9基因存在于基因间隔区(IGR),多序列比对发现miR-9基因家族成熟序列的第2位到第8位碱基以及第14位到第18位碱基为保守碱基。进化分析表明mir-9b和mir-9c可能是此基因家族最早出现的基因形式,即祖先基因。这些祖先基因经过串联重复、大片段重复、个别碱基的缺失及突变等方式形成了脊椎动物中miR-9-1至miR-9-7数个基因。分别采用四个miRNA靶基因预测软件对mmu-miR-9的靶基因进行预测,发现miR-9与神经系统发育、心肌系统疾病和跨膜运输系统等密切相关。该研究为今后进一步研究miRNA调控的神经系统发生和神经细胞生长与分化的机制奠定了基础。  相似文献   

16.
《生命科学研究》2015,(6):479-483
运用生物信息学方法在miRBase中搜索植物miR-171基因家族的序列,分析miR-171序列的进化特征并预测其靶基因。结果表明,在38种植物中共搜索到219条miR-171序列,大部分miR-171基因都存在于基因间隔区。进化分析表明,miR-171基因家族的进化与物种进化关联不大。采用3个miRNA靶基因预测软件对大豆和玉米miR-171基因的靶基因进行预测,发现了miR-171可能参与生长因子、转录因子、蛋白酶等的调控,作用范围非常广泛。  相似文献   

17.
18.
植物花青素生物合成中的调控基因   总被引:11,自引:0,他引:11  
文章概述了植物花青素的生物合成途径,重点介绍了植物花青素调控基因在几个重要的模式植物中的调控特点及其调控机制。  相似文献   

19.
Russian Journal of Genetics - Over the past decade, there has been an active study of the interactions between the population of transposable elements (TEs) and the rest of the genome. Many...  相似文献   

20.
Importin αs are import receptors for nuclear localization signal-containing proteins. Most animal importin αs assort into α1, α2, and α3 groups. Studies in Drosophila melanogaster, Caenorhabditis elegans, and mouse suggest that the animal importin α gene family evolved from ancestral plant-like genes to serve paralog-specific roles in gametogenesis. To explore this hypothesis we extended the phylogenetic analysis of the importin α gene family to nonbilateral animals and investigated whether animal-like genes occur in premetazoan taxa. Maximum likelihood analysis suggests that animal-like importin α genes occur in the Choanoflaggelate Monosiga brevicollis and the amoebozoan Dictyostelium; however, both of these results are caused by long-branch attraction effects. The absence of animal-like α genes in premetazoan taxa is consistent with the hypothesis that they duplicated and then specialized to function in animal gametogenesis. The gene structures of the importin αs provide insight into how the animal importin α gene family may have evolved from the most likely ancestral gene. Interestingly, animal α1s are more similar to plant and fungal α1-like sequences than they are to animal α2s or α3s. We show that animal α1 genes share most of their introns with plant α1-like genes, and α2s and α3s share many more intron positions with each other than with the α1s. Together, phylogenetics and gene structure analysis suggests a parsimonious path for the evolution of the mammalian importin α gene family from an ancestral α1-like progenitor. Finally, these results establish a rational basis for a unified nomenclature of the importin α gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号