首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The osteogenic growth peptide (OGP) is an extracellular mitogen identical to the histone H4 (H4) COOH-terminal residues 90-103, which regulates osteogenesis and hematopoiesis. By Northern analysis, OGP mRNA is indistinguishable from H4 mRNA. Indeed, cells transfected with a construct encoding [His102]H4 secreted the corresponding [His13]OGP. These results suggest production of OGP from H4 genes. Cells transfected with H4-chloramphenicol acetyltransferase (CAT) fusion genes expressed both "long" and "short" CAT proteins. The short CAT was retained following an ATG --> TTG mutation of the H4 ATG initiation codon, but not following mutation of the in-frame internal ATG85 codon, which, unlike ATG1, resides within a perfect context for translational initiation. These results suggest that a PreOGP is translated starting at AUG85. The translational initiation at AUG85 could be inhibited by optimizing the nucleotide sequence surrounding ATG1 to maximally support upstream translational initiation, thus implicating leaky ribosomal scanning in usage of the internal AUG. Conversion of the predicted PreOGP to OGP was shown in a cell lysate system using synthetic [His102]H4-(85-103) as substrate. Together, our results demonstrate that H4 gene expression diverges at the translational level into the simultaneous parallel production of both H4, a nuclear structural protein, and OGP, an extracellular regulatory peptide.  相似文献   

9.
We have constructed hybrid genes in which the coding region of the bacterial gene chloramphenicol acetyl transferase (CAT) has been linked to varying lengths of upstream sequences of Drosophila genes for larval serum sequence 1 (LSP1). These have been inserted into a P-element transformation vector and subsequently transferred into the germ-line of recipient flies. Transformants carrying the CAT gene linked to 1650 bp, 570 bp or 377 bp of upstream LSP1α sequences, or 745 bp or 471 bp of upstream β sequences express CAT with the same developmental and tissue specificity as the endogenous LSP1 genes. Constructs having only 66 bp of upstream LSP1β sequences, however, show extremely low levels of CAT expression in tissues and at developmental stages in which LSP1 is not expressed. We discuss the significance of short regions of homology between the DNA upstream of the α and β genes, which lie within the regions identified by the transformation experiments as being required for the cis-regulation of LSP1 synthesis.  相似文献   

10.
11.
Analysis of the Drosophila rDNA promoter by transient expression.   总被引:7,自引:4,他引:3  
  相似文献   

12.
13.
14.
15.
16.
Intron-mediated enhancement of heterologous gene expression in maize   总被引:15,自引:0,他引:15  
Chimeric genes containing the coding sequence for bacterial chloramphenicol acetyl transferase (CAT) have been introduced by electroporation into maize protoplasts (Black Mexican Sweet) and transient expression monitored by enzyme assays. Levels of CAT expression were enhanced 12-fold and 20-fold respectively by the inclusion of maize alcohol dehydrogenase-1 introns 2 and 6 in the chimeric construct. This enhancement was seen when the intron was placed within the 5 translated region but not when it was located upstream of the promoter or within the 3 untranslated region. Deletion of exon sequences adjacent to intron 2 abolished its ability to mediate enhancement of CAT gene expression. Northern analysis of protoplasts electroporated with intron constructs revealed elevated levels of CAT mRNA. However, this elevation was insufficient to account for the increased enzyme activity. One explanation of these results is that splicing affects both the quantity of mRNA.  相似文献   

17.
Electroporation and PEG delivery of DNA into maize microspores   总被引:4,自引:0,他引:4  
Summary The ability to deliver and detect reporter gene activity in maize microspores was tested. Tested expression vectors contained the chloramphenicol acetyl transferase (CAT) gene and one of the following promoter-intron combinations: 1) cauliflower mosaic virus (CaMV 35S), 2) CaMV 35S + maize alcohol dehydrogenase 1 intron 6 (Adh1-I6), 3) maize alcohol dehydrogenase 1 + intron 1 (Adh1-I1), or 4) maize ubiquitin 1 + intron 1 (Ubiq 1-I1) promoter + intron. The expression vectors were delivered into maize microspores using electroporation or polyethylene glycol (PEG). Both methods were effective for delivering free DNA into microspores. Although all four promoters were active in maize protoplasts, only two promoters were active in maize microspores. The CaMV 35S and the Adh1 promoters did not promote gene expression in maize microspore. The CaMV 35S + Adh1-I6 and Ubiq1-I1 promoters produced high levels of CAT activity in maize microspores.  相似文献   

18.
19.
Low-temperature stress was shown to cause a rapid increase in steady-state levels of alcohol dehydrogenase-1 message (Adh1) and protein activity (ADH1) in maize (Zea mays) (B37N, A188) and rice (Oryza sativa) (Taipei 309, Calmochi 101) seedlings. Maize roots and rice shoots and roots from 7-day seedlings shifted to low temperature (10°C) contained as much as 15-fold more Adh1 mRNA and 8-fold more ADH1 protein activity than the corresponding tissues from untreated seedlings. Time-course studies showed that these tissues accumulated Adh1 mRNA and ADH1 activity severalfold within 4- to 8-hour, levels plateaued within 20 to 24 hours, and remained elevated at 4 days of cold treatment. Within 24 hours of returning cold-stressed seedlings to ambient temperature, Adh1 mRNA and ADH1 activity decreased to pretreatment levels. Histochemical staining of maize and rice tissue imprints showed that ADH activity was enhanced along the lengths of cold-stressed maize primary roots and rice roots, and along the stems and leaves of rice shoots. Our observations suggest that short-term cold stress induces Adh1 gene expression in certain plant tissues, which, reminiscient of the anaerobic response, may reflect a fundamental shift in energy metabolism to ensure tissue survival during the stress period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号