首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We used herpes simplex virus type 1 (HSV-1) DNA and restriction fragments of HSV-1 DNA covalently coupled to cellulose as a reagent to isolate for further characterization the major and minor HSV-1 immediate-early mRNA species in HeLa cells infected and maintained in the absence of de novo protein synthesis. Five major and several minor immediate-early mRNA species were characterized. One major species was a 4.2-kilobase mRNA mapping in the TR(S)/IR(S) region with its 3' end distal to the U(S) region; this mRNA encoded a 170,000-dalton polypeptide in vitro. A 2.8-kilobase mRNA, encoding a 120,000-dalton polypeptide, was mapped in the TR(L)/IR(L) region with its 3' end directed toward the U(L) region. Three 1.8-kilobase mRNA species were mapped. One, mapping in the IR(S) region with its 3' end in the U(S), encoded a 68,000-dalton polypeptide. One mapped in the TR(S) region and had its 3' end in the U(S) region; the third one encoded a 64,000-dalton polypeptide and mapped in the U(L) region near the IR(L) region. One minor species 5.2 kilobases in size was clearly detectable mapping in the U(L) region. Furthermore, there were indications that one or more immediate-early mRNA species approximately 3 kilobases in size hybridized to regions near the TR(L) and in or near the TR(S)/IR(S) regions. Nuclear immediate-early RNA mapped only in those regions where polyribosomal immediate-early mRNA mapped, although minor differences were seen. Finally, we demonstrated that at least three major immediate-early mRNA's-4.2 kilobases, 2.8 kilobases, and the 1.8-kilobase one mapping in the IR(S)/U(S) region-continued to appear on polyribosomes as functional mRNA late after infection.  相似文献   

2.
Interactions with immune responses or exposure to certain antibiotics can remove the peptidoglycan wall of many Gram-negative bacteria. Though the spheroplasts thus created usually lyse, some may survive by resynthesizing their walls and shapes. Normally, bacterial morphology is generated by synthetic complexes directed by FtsZ and MreBCD or their homologues, but whether these classic systems can recreate morphology in the absence of a preexisting template is unknown. To address this question, we treated Escherichia coli with lysozyme to remove the peptidoglycan wall while leaving intact the inner and outer membranes and periplasm. The resulting lysozyme-induced (LI) spheroplasts recovered a rod shape after four to six generations. Recovery proceeded via a series of cell divisions that produced misshapen and branched intermediates before later progeny assumed a normal rod shape. Importantly, mutants defective in mounting the Rcs stress response and those lacking penicillin binding protein 1B (PBP1B) or LpoB could not divide or recover their cell shape but instead enlarged until they lysed. LI spheroplasts from mutants lacking the Lpp lipoprotein or PBP6 produced spherical daughter cells that did not recover a normal rod shape or that did so only after a significant delay. Thus, to regenerate normal morphology de novo, E. coli must supplement the classic FtsZ- and MreBCD-directed cell wall systems with activities that are otherwise dispensable for growth under normal laboratory conditions. The existence of these auxiliary mechanisms implies that they may be required for survival in natural environments, where bacterial walls can be damaged extensively or removed altogether.  相似文献   

3.
De novo DNA methylation and the maintenance of DNA methylation in asymmetrical sequence contexts is catalyzed by homologous proteins in plants (DRM2) and animals (DNMT3a/b). In plants, targeting of DRM2 depends on small interfering RNAs (siRNAs), although the molecular details are still unclear. Here, we show that two SRA-domain proteins (SUVH9 and SUVH2) are also essential for DRM2-mediated de novo and maintenance DNA methylation in Arabidopsis thaliana. At some loci, SUVH9 and SUVH2 act redundantly, while at other loci only SUVH2 is required, and this locus specificity correlates with the differing DNA-binding affinity of the SRA domains within SUVH9 and SUVH2. Specifically, SUVH9 preferentially binds methylated asymmetric sites, while SUVH2 preferentially binds methylated CG sites. The suvh9 and suvh2 mutations do not eliminate siRNAs, suggesting a role for SUVH9 and SUVH2 late in the RNA-directed DNA methylation pathway. With these new results, it is clear that SRA-domain proteins are involved in each of the three pathways leading to DNA methylation in Arabidopsis.  相似文献   

4.
Insertions of the yeast element Ty3 resulting from induced retrotransposition were characterized in order to identify the genomic targets of transposition. The DNA sequences of the junctions between Ty3 and flanking DNA were determined for two insertions of an unmarked element. Each insertion was at position -17 from the 5' end of a tRNA-coding sequence. Ninety-one independent insertions of a marked Ty3 element were studied by Southern blot analysis. Pairs of independent insertions into seven genomic loci accounted for 14 of these insertions. The DNA sequence flanking the insertion site was determined for at least one member of each pair of integrated elements. In each case, insertion was at position -16 or -17 relative to the 5' end of one of seven different tRNA genes. This proportion of genomic loci used twice for Ty3 integration is consistent with that predicted by a Poisson distribution for a number of genomic targets roughly equivalent to the estimated number of yeast tRNA genes. In addition, insertions upstream of the same tRNA gene in one case were at different positions, but in all cases were in the same orientation. Thus, genomic insertions of Ty3 in a particular orientation are apparently specified by the target, while the actual position of the insertion relative to the tRNA-coding sequence can vary slightly.  相似文献   

5.
6.
Protein folding and design are major biophysical problems, the solution of which would lead to important applications especially in medicine. Here we provide evidence of how a novel parametrization of the Caterpillar model may be used for both quantitative protein design and folding. With computer simulations it is shown that, for a large set of real protein structures, the model produces designed sequences with similar physical properties to the corresponding natural occurring sequences. The designed sequences require further experimental testing. For an independent set of proteins, previously used as benchmark, the correct folded structure of both the designed and the natural sequences is also demonstrated. The equilibrium folding properties are characterized by free energy calculations. The resulting free energy profiles not only are consistent among natural and designed proteins, but also show a remarkable precision when the folded structures are compared to the experimentally determined ones. Ultimately, the updated Caterpillar model is unique in the combination of its fundamental three features: its simplicity, its ability to produce natural foldable designed sequences, and its structure prediction precision. It is also remarkable that low frustration sequences can be obtained with such a simple and universal design procedure, and that the folding of natural proteins shows funnelled free energy landscapes without the need of any potentials based on the native structure.  相似文献   

7.
Plant peroxisomes play a pivotal role during postgerminative growth by breaking down fatty acids to provide fixed carbons for seedlings before the onset of photosynthesis. The enzyme composition of peroxisomes changes during the transition of the seedling from a heterotrophic to an autotrophic state; however, the mechanisms for the degradation of obsolete peroxisomal proteins remain elusive. One candidate mechanism is autophagy, a bulk degradation pathway targeting cytoplasmic constituents to the lytic vacuole. We present evidence supporting the autophagy of peroxisomes in Arabidopsis thaliana hypocotyls during seedling growth. Mutants defective in autophagy appeared to accumulate excess peroxisomes in hypocotyl cells. When degradation in the vacuole was pharmacologically compromised, both autophagic bodies and peroxisomal markers were detected in the wild-type vacuole but not in that of the autophagy-incompetent mutants. On the basis of the genetic and cell biological data we obtained, we propose that autophagy is important for the maintenance of peroxisome number and cell remodeling in Arabidopsis hypocotyls.  相似文献   

8.
9.
Flock House virus (FHV) is a positive-stranded RNA virus with a bipartite genome of RNAs, RNA1 and RNA2, and belongs to the family Nodaviridae. As the most extensively studied nodavirus, FHV has become a well-recognized model for studying various aspects of RNA virology, particularly viral RNA replication and antiviral innate immunity. FHV RNA1 encodes protein A, which is an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for RNA replication. Although the RNA replication of FHV has been studied in considerable detail, the mechanism employed by FHV protein A to initiate RNA synthesis has not been determined. In this study, we characterized the RdRP activity of FHV protein A in detail and revealed that it can initiate RNA synthesis via a de novo (primer-independent) mechanism. Moreover, we found that FHV protein A also possesses a terminal nucleotidyl transferase (TNTase) activity, which was able to restore the nucleotide loss at the 3′-end initiation site of RNA template to rescue RNA synthesis initiation in vitro, and may function as a rescue and protection mechanism to protect the 3′ initiation site, and ensure the efficiency and accuracy of viral RNA synthesis. Altogether, our study establishes the de novo initiation mechanism of RdRP and the terminal rescue mechanism of TNTase for FHV protein A, and represents an important advance toward understanding FHV RNA replication.  相似文献   

10.
The de novo peptide with 63-residues (MHB) has been synthesized biochemically and used for the binding of manganese (II) ions. In designed peptide, the leucine of the peptide dA1 (prototype) was replaced by His27 and Asp41 for binding the manganese (II) ions. The different chromatography studies and mass determination showed that new peptide folds into a monomeric, highly helical with a active site structure similar to the native Mn–SOD in an aqueous solution. Electron paramagnetic resonance (EPR) study suggested that the peptide binds single manganese (II) ion per molecule loosely with K D value of about 36 μM. The circular dichroism (CD) studies demonstrated that the helical contents of the peptide did not change significantly even after binding the metal ions. The SOD activity study of the Mn–peptide complex showed that the IC50 values is 8.08 μM.  相似文献   

11.
Local production and action of cholesterol metabolites such as steroids or oxysterols within endocrine tissues are currently recognized as an important principle in the cell type- and tissue-specific regulation of hormone effects. In adipocytes, one of the most abundant endocrine cells in the human body, the de novo production of steroids or oxysterols from cholesterol has not been examined. Here, we demonstrate that essential components of cholesterol transport and metabolism machinery in the initial steps of steroid and/or oxysterol biosynthesis pathways are present and active in adipocytes. The ability of adipocyte CYP11A1 in producing pregnenolone is demonstrated for the first time, rendering adipocyte a steroidogenic cell. The oxysterol 27-hydroxycholesterol (27HC), synthesized by the mitochondrial enzyme CYP27A1, was identified as one of the major de novo adipocyte products from cholesterol and its precursor mevalonate. Inhibition of CYP27A1 activity or knockdown and deletion of the Cyp27a1 gene induced adipocyte differentiation, suggesting a paracrine or autocrine biological significance for the adipocyte-derived 27HC. These findings suggest that the presence of the 27HC biosynthesis pathway in adipocytes may represent a defense mechanism to prevent the formation of new fat cells upon overfeeding with dietary cholesterol.  相似文献   

12.
Fragment-based approaches are the current standard for de novo protein structure prediction. These approaches rely on accurate and reliable fragment libraries to generate good structural models. In this work, we describe a novel method for structure fragment library generation and its application in fragment-based de novo protein structure prediction. The importance of correct testing procedures in assessing the quality of fragment libraries is demonstrated. In particular, the exclusion of homologs to the target from the libraries to correctly simulate a de novo protein structure prediction scenario, something which surprisingly is not always done. We demonstrate that fragments presenting different predominant predicted secondary structures should be treated differently during the fragment library generation step and that exhaustive and random search strategies should both be used. This information was used to develop a novel method, Flib. On a validation set of 41 structurally diverse proteins, Flib libraries presents both a higher precision and coverage than two of the state-of-the-art methods, NNMake and HHFrag. Flib also achieves better precision and coverage on the set of 275 protein domains used in the two previous experiments of the the Critical Assessment of Structure Prediction (CASP9 and CASP10). We compared Flib libraries against NNMake libraries in a structure prediction context. Of the 13 cases in which a correct answer was generated, Flib models were more accurate than NNMake models for 10. “Flib is available for download at: http://www.stats.ox.ac.uk/research/proteins/resources”.  相似文献   

13.

Background

Synthesis of lipid species, including fatty acids (FA) and cholesterol, can contribute to pathological disease. The purpose of this study was to investigate FA and cholesterol synthesis in individuals with type 1 diabetes, a group at elevated risk for vascular disease, using stable isotope analysis.

Methods

Individuals with type 1 diabetes (n = 9) and age-, sex-, and BMI-matched non-diabetic subjects (n = 9) were recruited. On testing day, meals were provided to standardize food intake and elicit typical feeding responses. Blood samples were analyzed at fasting (0 and 24 h) and postprandial (2, 4, 6, and 8 hours after breakfast) time points. FA was isolated from VLDL to estimate hepatic FA synthesis, whereas free cholesterol (FC) and cholesteryl ester (CE) was isolated from plasma and VLDL to estimate whole-body and hepatic cholesterol synthesis, respectively. Lipid synthesis was measured using deuterium incorporation and isotope ratio mass spectrometry.

Results

Fasting total hepatic lipogenesis (3.91±0.90% vs. 5.30±1.22%; P = 0.41) was not significantly different between diabetic and control groups, respectively, nor was synthesis of myristic (28.60±4.90% vs. 26.66±4.57%; P = 0.76), palmitic (12.52±2.75% vs. 13.71±2.64%; P = 0.65), palmitoleic (3.86±0.91% vs. 4.80±1.22%; P = 0.65), stearic (5.55±1.04% vs. 6.96±0.97%; P = 0.29), and oleic acid (1.45±0.28% vs. 2.10±0.51%; P = 0.21). Postprandial lipogenesis was also not different between groups (P = 0.38). Similarly, fasting synthesis of whole-body FC (8.2±1.3% vs. 7.3±0.8%/day; P = 0.88) and CE (1.9±0.4% vs. 2.0±0.3%/day; P = 0.96) and hepatic FC (8.2±2.0% vs. 8.1±0.8%/day; P = 0.72) was not significantly different between diabetic and control subjects.

Conclusions

Despite long-standing disease, lipogenesis and cholesterol synthesis was not different in individuals with type 1 diabetes compared to healthy non-diabetic humans.  相似文献   

14.
Cerebellar RNA accumulation, synthesis, and functional capacity was studied in 14-day-old F1 hybrid rats subjected to neonatally induced graft versus host disease (GVHD). There was a decrease in RNA synthetic rate as measured by the uptake of labeled precursors into RNA. The decrease in total cerebellar RNA synthesis was reflected both in a reduced amount of Nissl substance, visible in cresyl violet-stained 10-micron-thick sections of cerebella, and in the total amount of cytoplasmic RNA isolated from individual cerebella from diseased animals compared with control littermates. Analysis of the RNA translational capacity in wheat germ protein synthesizing systems showed that RNA from experimental animals was also biologically less active. Qualitative differences between protein populations in control and diseased animals were analyzed by two-dimensional gel electrophoresis. There were few alterations in the steady state levels of cerebellar protein. However, two-dimensional gel electrophoresis of the peptides synthesized in vitro by RNA from control and diseased animals showed that there were several changes in the relative abundance of some mRNAs between the two RNA populations. These data show that the cerebellar RNA from rats with GVHD differs both qualitatively and quantitatively from that of controls.  相似文献   

15.
Acm2, the major autolysin of Lactobacillus plantarum WCFS1, was recently found to be O-glycosylated with N-acetylhexosamine, likely N-acetylglucosamine (GlcNAc). In this study, we set out to identify the glycosylation machinery by employing a comparative genomics approach to identify Gtf1 homologues, which are involved in fimbria-associated protein 1 (Fap1) glycosylation in Streptococcus parasanguinis. This in silico approach resulted in the identification of 6 candidate L. plantarum WCFS1 genes with significant homology to Gtf1, namely, tagE1 to tagE6. These candidate genes were targeted by systematic gene deletion, followed by assessment of the consequences on glycosylation of Acm2. We observed a changed mobility of Acm2 on SDS-PAGE in the tagE5E6 deletion strain, while deletion of other tagE genes resulted in Acm2 mobility comparable to that of the wild type. Subsequent mass spectrometry analysis of excised and in-gel-digested Acm2 confirmed the loss of glycosylation on Acm2 in the tagE5E6 deletion mutant, whereas a lectin blot using GlcNAc-specific succinylated wheat germ agglutinin (sWGA) revealed that besides Acm2, tagE5E6 deletion also abolished all but one other sWGA-reactive, protease-sensitive signal. Only complementation of both tagE5 and tagE6 restored those sWGA lectin signals, establishing that TagE5 and TagE6 are both required for the glycosylation of Acm2 as well as the vast majority of other sWGA-reactive proteins. Finally, sWGA lectin blotting experiments using a panel of 8 other L. plantarum strains revealed that protein glycosylation is a common feature in L. plantarum strains. With the establishment of these enzymes as protein glycosyltransferases, we propose to rename TagE5 and TagE6 as GtfA and GtfB, respectively.  相似文献   

16.
Serine carboxypeptidase-like (SCPL) proteins have recently emerged as a new group of plant acyltransferases. These enzymes share homology with peptidases but lack protease activity and instead are able to acylate natural products. Several SCPL acyltransferases have been characterized to date from dicots, including an enzyme required for the synthesis of glucose polyesters that may contribute to insect resistance in wild tomato (Solanum pennellii) and enzymes required for the synthesis of sinapate esters associated with UV protection in Arabidopsis thaliana. In our earlier genetic analysis, we identified the Saponin-deficient 7 (Sad7) locus as being required for the synthesis of antimicrobial triterpene glycosides (avenacins) and for broad-spectrum disease resistance in diploid oat (Avena strigosa). Here, we report on the cloning of Sad7 and show that this gene encodes a functional SCPL acyltransferase, SCPL1, that is able to catalyze the synthesis of both N-methyl anthraniloyl- and benzoyl-derivatized forms of avenacin. Sad7 forms part of an operon-like gene cluster for avenacin synthesis. Oat SCPL1 (SAD7) is the founder member of a subfamily of monocot-specific SCPL proteins that includes predicted proteins from rice (Oryza sativa) and other grasses with potential roles in secondary metabolism and plant defense.  相似文献   

17.
In chicken embryo fibroblasts (CEFs), β-actin mRNA localizes near an actin-rich region of cytoplasm specialized for motility, the lamellipodia. This localization is mediated by isoform-specific 3′-untranslated sequences (zipcodes) and can be inhibited by antizipcode oligodeoxynucleotides (ODNs) (Kislauskis, E.H., X.-C. Zhu, and R.H. Singer. 1994. J. Cell Biol. 127: 441–451). This inhibition of β-actin mRNA localization resulted in the disruption of fibroblast polarity and, presumably, cell motility. To investigate the role of β-actin mRNA in motility, we correlated time-lapse images of moving CEFs with the distribution of β-actin mRNA in these cells. CEFs with localized β-actin mRNA moved significantly further over the same time period than did CEFs with nonlocalized mRNA. Antizipcode ODN treatment reduced this cell translocation while control ODN treatments showed no effect. The temporal relationship of β-actin mRNA localization to cell translocation was investigated using serum addition to serum-deprived cultures. β-actin mRNA was not localized in serum-deprived cells but became localized within minutes after serum addition (Latham, V.M., E.H. Kislauskis, R.H. Singer, and A.F. Ross. 1994. J. Cell Biol. 126:1211–1219). Cell translocation increased over the next 90 min, and actin synthesis likewise increased. Puromycin reduced this cell translocation and blocked this induction in cytosolic actin content. The serum induction of cell movement was also inhibited by antizipcode ODNs. These observations support the hypothesis that β-actin mRNA localization and consequent protein synthesis augment cell motility.  相似文献   

18.
We have previously reported that the NS3 helicase (N3H) and NS5B-to-3′X (N5BX) regions are important for the efficient replication of hepatitis C virus (HCV) strain JFH-1 and viral production in HuH-7 cells. In the current study, we investigated the relationships between HCV genome replication, virus production, and the structure of N5BX. We found that the Q377R, A450S, S455N, R517K, and Y561F mutations in the NS5B region resulted in up-regulation of J6CF NS5B polymerase activity in vitro. However, the activation effects of these mutations on viral RNA replication and virus production with JFH-1 N3H appeared to differ. In the presence of the N3H region and 3′ untranslated region (UTR) of JFH-1, A450S, R517K, and Y561F together were sufficient to confer HCV genome replication activity and virus production ability to J6CF in cultured cells. Y561F was also involved in the kissing-loop interaction between SL3.2 in the NS5B region and SL2 in the 3′X region. We next analyzed the 3′ structure of HCV genome RNA. The shorter polyU/UC tracts of JFH-1 resulted in more efficient RNA replication than J6CF. Furthermore, 9458G in the JFH-1 variable region (VR) was responsible for RNA replication activity because of its RNA structures. In conclusion, N3H, high polymerase activity, enhanced kissing-loop interactions, and optimal viral RNA structure in the 3′UTR were required for J6CF replication in cultured cells.  相似文献   

19.
20.
激活素具有调节激素分泌以及神经保护等多种作用,最近在小鼠脑内发现的激活素受体相互作用蛋白1(ARIP1)具有介导激活素信号传导作用,但有关ARIP1的分布情况仍然不清楚。本研究采用RT-PCR及免疫组织化学染色分析ARIP1在脑及脑外的表达与分布情况。RT-PCR检测发现ARIP1 mRNA不仅在大脑、小脑表达,在垂体、肾上腺以及睾丸也有明显表达。免疫组化染色显示大脑、小脑、垂体、肾上腺和睾丸均有不同程度的ARIP1免疫染色反应,小脑中浦肯野细胞着色明显,大脑主要是海马和下丘脑,在神经垂体、腺垂体的嗜碱细胞以及肾上腺网状带、球状带、束状带中均有表达,睾丸间质细胞也可见ARIP1成熟蛋白表达。结果提示,ARIP1不仅参与脑神经细胞的信号传导调节,也可能参与神经内分泌腺的功能调节。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号