首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of creatine phosphokinase (CPK) expression by polypeptide growth factors has been examined in the clonal mouse muscle BC3H1 cell line. After arrest of cell growth by exposure to low concentrations of serum, BC3H1 cells accumulate high levels of muscle-specific proteins including CPK. The induction of this enzyme is reversible in the presence of high concentrations of fetal calf serum, which cause quiescent, differentiated cells to reenter the cell cycle. Under these conditions, the rate of CPK synthesis is drastically reduced. We show in the present communication that either pituitary-derived fibroblast growth factor (FGF) or brain-derived FGF are as effective as serum in repressing the synthesis of CPK when added to quiescent, differentiated cells. The decrease in the rate of synthesis of CPK occurs within 22 h after the addition of pituitary FGF to the cells. Pituitary FGF had very little effect, if any, on the rate CPK degradation. The overall rate of protein synthesis and the pattern of synthesis of the major polypeptides made by these cells was not altered by the addition of FGF. Although pituitary FGF was mitogenic for BC3H1 cells, the rate of cell growth was not absolutely correlated with the extent of repression of CPK. Brain-derived FGF fully repressed CPK induction under conditions where it showed no significant mitogenic activity. These results show that the expression of a muscle-specific protein, CPK, can be controlled by a single defined polypeptide growth factor in fully differentiated cultures, and that initiation of cell division is not required for their regulation to take place.  相似文献   

2.
We have examined the control of actin isoform synthesis by pituitary-derived fibroblast growth factor and serum in BC3H1 cells, a tumor-derived nonfusing muscle cell line. Under differentiating conditions in BC3H1 cells, the synthesis of beta- and gamma-actin ceases, and the rate of alpha-actin synthesis is increased concomitant with cessation of cell growth. Addition of fetal calf serum to differentiated cells reverses the process, whereas the addition of pituitary-derived fibroblast growth factor inhibits synthesis of alpha-actin but fails to induce the synthesis of beta- and gamma-actin. Analysis of RNA from differentiated BC3H1 cells after the addition of fetal calf serum indicated that the serum-induced increase in beta- and gamma-actin synthesis reflected an increase in their mRNA levels. In contrast, the repression of alpha-actin synthesis by fetal calf serum or fibroblast growth factor appears to reflect the translation efficiency of alpha-actin mRNA. Fibroblast growth factor is a competence factor for BC3H1 cells which allows them to progress from G0 4 h into the G1 phase of the cell cycle. In order to understand the nature of the intracellular signals responsible for the effect of fibroblast growth factor, we treated cells with vanadate, a known inhibitor of tyrosine-specific protein phosphatases. Vanadate fully mimics the action of fibroblast growth on actin synthesis and creatine phosphokinase synthesis and causes BC3H1 cells to exit the G0 portion of the cell cycle, as demonstrated by the induction of the c-fos proto-oncogene following addition of serum, vanadate, or bovine pituitary-derived fibroblast growth factor to these cells. We conclude that repression of alpha-actin synthesis and induction of the synthesis of beta- and gamma-actin are under independent control and that the induction of beta- and gamma-nonmuscle actin synthesis following serum addition is independent from movement into the cell cycle, and dependent on as yet unidentified serum components. The rate of synthesis of alpha-actin can be controlled by a defined mitogenic polypeptide fibroblast growth factor, which in short term experiments primarily affects the rate of translation of alpha-actin mRNA. The repression by fibroblast growth factor is most likely due to activation of a tyrosine specific protein kinase(s).  相似文献   

3.
The accumulation of translatable acetylcholine receptor alpha-subunit mRNA was examined in the BC3H1 muscle cell line in response to serum and cell growth. Relative amounts of alpha-subunit mRNA were quantitated during differentiation by cell-free translation and immunoprecipitation with an alpha-subunit-specific monoclonal antibody. Logarithmically growing cells do not possess cell surface acetylcholine receptors; however, a significant amount of alpha-subunit mRNA is detectable in cells under these conditions. Furthermore, alpha-subunit is synthesized in growing undifferentiated cells at a rate similar to that of differentiated cultures. Following growth arrest of BC3H1 cells, surface receptors are induced to levels greater than 100-fold above that of growing cells. The relative level of translatable alpha-subunit mRNA in differentiated cells, however, is only approximately 4-fold greater than in growing cultures. Induction of alpha-subunit mRNA appears to be reversible since reinitiation of growth in quiescent differentiated BC3H1 cells results in a reduction in relative abundance of this mRNA species to levels comparable to that of undifferentiated cells and the concomitant loss of surface receptors. These results indicate that receptor expression during differentiation is regulated both post-translationally and at the level of receptor subunit mRNA accumulation.  相似文献   

4.
We have examined the effects of epidermal growth factor (EGF), platelet-derived growth factor, and insulin on the differentiation of a mouse vascular smooth muscle-like cell line, the BC3H1 cells. On the basis of cell morphology and smooth muscle alpha-isoactin synthesis, we demonstrate that EGF at physiological concentrations prevents the differentiation of these cells, whereas platelet-derived growth factor has no apparent effect. The induction of alpha-isoactin synthesis by serum deprivation is inhibited by EGF in a dose-dependent manner with a half-maximal effect at 3-5 ng/ml and a maximal inhibition at approximately 30 ng/ml. Northern analysis also shows that EGF blocks the accumulation of alpha-isoactin mRNA normally observed during cell differentiation. Addition of EGF to differentiated cells results in a repression of alpha-isoactin synthesis, a stimulation of beta- and gamma-isoactin synthesis, and the stabilization of the nonmuscle isoactins. The synthesis of creatine phosphokinase, a muscle-specific noncontractile protein, is also regulated by EGF in a similar fashion. Modulation by EGF of alpha-isoactin expression is not affected by aphidicolin and is therefore independent of its mitogenic effect on these cells. Insulin is not required for observation of the EGF-dependent effects but instead seems to promote differentiation. Our results show that EGF can replace serum in controlling the differentiation of BC3H1 cells.  相似文献   

5.
Skeletal muscle differentiation is accompanied by accumulation of the mRNA encoding the muscle isoenzyme of creatine kinase (MCK) and can be suppressed by serum components, fibroblast growth factor (FGF), or type beta transforming growth factor (TGF beta). Using the nonfusing myogenic cell line, BC3H1, the potential involvement of c-myc in growth factor-dependent inhibition of myogenesis was examined. Withdrawal of undifferentiated myoblasts from the cell cycle in medium with 0.5% serum was associated with a precipitous decline in expression of c-myc mRNA followed by induction of MCK mRNA. In 0.5% serum containing TGF beta, c-myc mRNA declined to a level identical to that in differentiated cells; however, MCK mRNA was not expressed. Exposure of quiescent differentiated cells to FGF or TGF beta caused disappearance of muscle-specific gene products and was accompanied by only transient low level induction of c-myc mRNA. These data indicate that persistent c-myc expression is not required for growth factor-mediated inhibition of myogenic differentiation.  相似文献   

6.
The nonfusing muscle cell line BC3H1 expresses a family of muscle-specific proteins when the fetal bovine serum (FBS) concentration is reduced from 20 to 1%. We have used a series of glycosylation inhibitors to assess the role played by glycoproteins in the initiation of differentiation in this cell line. Tunicamycin (TNM) and 2-deoxy-D-glucose, added to cells when the FBS concentration was reduced, blocked creatine phosphokinase (CPK) induction by 70-95%. These effects were dose dependent and reversible. TNM and 2-deoxy-D-glucose also reversed CPK induction in differentiated cells. Leupeptin and N-acetylglucosamine did not reverse these effects. 1-Deoxynojirimycin, 1-deoxymannojirimycin, and swainsonine have no effect on induced CPK expression, whereas castanospermine, a glucosidase I inhibitor, blocked its induction completely. As attempts to use conditioned medium from cells grown in 1 or 20% FBS have no effect on this differentiation process we conclude that high mannose structures, but not complex form glycoproteins, bound to the surface of BC3H1 cells play a role in transducing signals for differentiation and are probable mediators of cell/cell contact.  相似文献   

7.
8.
When embryoid bodies are grown in suspension culture in vitro, they undergo only a limited amount of morphological development. When these same embryoid bodies are permitted to attach to the surface of a culture dish, a wide variety of new morphological cell types appear. Suspension cultures of embryoid bodies do not contain significant detectable levels of acetylcholine esterase or creatine phosphokinase. These same enzymes however are produced in cell cultures derived from embryoid bodies attached to the culture dish surface. Polyacrylamide gel electrophoresis has been employed to demonstrate that the electrophoretic form of creatine phosphokinase produced by teratoma cells in culture is the brain form of the enzyme. Solid transplantable tumors containing only embryonal carcinoma cells (stem cells) do not contain either of these enzymatic activities. Well differentiated transplantable teratomas contain both enzymes.  相似文献   

9.
Upon reduction of serum in their media, mouse BC3H1 muscle cells withdraw from the cell cycle and begin to differentiate. In differentiating cells, the induction of muscle-specific genes is accompanied by a distinct morphological chance. However, differentiated BC3H1 cells do not fuse with each other; they remain mononucleated. Metalloendoprotease inhibitors selectively block the differentiation of BC3H1 cells while inhibitors of other protease types are ineffective. In these cells, the degradation of the internalized insulin is initiated by a 110 kDa, non-lysosomal protease known as the insulin-degrading enzyme. The same metalloendoprotease inhibitors that block BC3H1 differentiation also inhibit, with a similar specificity and potency, the in vitro and the in vivo degradation of insulin by the insulin-degrading enzyme. When the serum in the medium is reduced, the activity of the insulin-degrading enzyme in the cell cytoplasm increases rapidly. This increase precedes any detectable change in the differentiation state of these cells by about 12 hours. These results, together with very similar ones obtained with primary rat skeletal muscle cells, support our earlier proposal that the insulin-degrading enzyme is the metalloendoprotease involved in the initiation of the morphological and biochemical differentiation of muscle cells in culture.  相似文献   

10.
Myogenic differentiation is obligatorily coupled to withdrawal of myoblasts from the cell cycle and is inhibited by specific polypeptide growth factors. To investigate the potential involvement of c-myc in the control of myogenesis, the BC3H1 muscle cell line was stably transfected with a simian virus 40 promoter:c-myc chimeric gene. In quiescent cells in 0.5% serum, the exogenous c-myc gene was expressed at a level more than threefold greater than the level of endogenous c-myc in undifferentiated, proliferating cells of the parental line in 20% serum. The transfected myc gene partially inhibited the expression of both muscle creatine kinase and the nicotinic acetylcholine receptor, but was not sufficient to prevent the induction of these muscle differentiation products upon mitogen withdrawal.  相似文献   

11.
12.
Myogenesis is accompanied by the withdrawal of proliferating myoblasts from the cell cycle, their fusion to form myotubes, and the coordinate expression of a variety of muscle-specific gene products, such as the muscle isoenzyme of creatine kinase (MCK). In the present study we used the nonfusing muscle cell line, BC3H1, to examine the mechanisms involved in regulation of MCK mRNA expression. Proliferating BC3H1 cells, in media with 20% fetal calf serum, had undetectable levels of MCK mRNA. Exposure of undifferentiated cells to media containing 0.5% serum resulted in withdrawal of cells from the cell cycle and in a several hundred-fold increase in the steady state level of MCK mRNA. Induction of this muscle-specific mRNA could be rapidly reversed by exposure of quiescent differentiated cells to media containing either 20% serum or pituitary fibroblast growth factor. The decline in the steady state level of MCK mRNA following mitogenic stimulation was not dependent upon reentry of cells into the cell cycle, but it did require protein synthesis. Together, these data indicate that fibroblast growth factor can specifically inhibit muscle-specific gene expression through a mechanism independent of cell proliferation. The finding that MCK mRNA was down-regulated by a mechanism that required protein synthesis suggests that mitogen-inducible early gene products may be involved in regulation of muscle gene expression.  相似文献   

13.
The regulation of the synthesis of muscle-specific proteins has been examined in BC3H1 cells, a smooth muscle-like cell line isolated by Schubert et al. (J. Cell Biol., 1974, 61: 398-413.). The synthesis of both creatine kinase and the acetylcholine receptor appear to be under dual control, a positive control due to cell-cell contact which increases the rate of synthesis of this protein, and a negative signal, elicited by serum components, that decreases the rate of synthesis of these proteins. Induction of muscle-specific proteins in BC3H1 cells is a reversible process and can be arrested after partial induction has taken place by the addition of serum or high-molecular-weight protein fraction from serum to these cells. The high-molecular-weight protein fraction from serum is not by itself mitogenic for Bc3H1 cells and cannot be replaced by a variety of known hormones (mitogenic factors).  相似文献   

14.
We have studied several aspects of glycoprotein synthesis in myoblast differentiation by using a nonfusing myoblast cell line, BC3H1. Previous studies showed that transfer of proliferating undifferentiated BC3H1 cells to mitogen-depleted medium results in the cells' withdrawal from the cell cycle and induction of a variety of muscle-specific gene products [E. N. Olson, L. Glaser, J. P. Merlie, R. Sebane, and J. Lindstrom (1983) J. Biol. Chem. 258, 13946-13953]. Because cell surface glycoproteins have been implicated in myoblast differentiation, in the present study we measured the amount of oligosaccharyltransferase in microsomes isolated from BC3H1 cells at various stages of differentiation. By using an acceptor peptide containing the sequence-Asn-Leu-Thr-, enzyme activity was measured by formation of [3H]glycopeptide. In addition, active enzyme protein was measured with a 125I-labeled photoreactive derivative of the acceptor tripeptide. Both of these independent assay methods revealed a marked increase in oligosaccharyltransferase when differentiation was induced by serum depletion. Moreover, mitogenic stimulation of differentiated cells resulted in a return of oligosaccharyltransferase to near basal levels. This reversible increase in this key enzyme in protein glycosylation occurred despite the fact that both total protein and glycoprotein synthesis were depressed during differentiation. These data indicate that during myogenesis the level of oligosaccharyltransferase is regulated in parallel with a number of muscle-specific gene products. These results are discussed in the context of regulation of the pathway of glycoprotein synthesis.  相似文献   

15.
16.
17.
The induction of the enzyme creatine phosphokinase (CPK) in cultures of chick breast muscle myoblasts has been distinguished from the process of fusion of myoblasts resulting in the formation of multinucleated myotubes. Primary cultures of myoblasts grown in the presence of phospholipase C, BUdR or EGTA, all of which prevent cell fusion, contain amounts of CPK similar to the level in untreated cultures. Both the brain and muscle isozymes are present in all cultures. We conclude that the induction of CPK is not dependent upon the formation of multinucleated myotubes.  相似文献   

18.
Monolayer cultures of human mesothelial cells made quiescent by serum deprivation are induced to undergo one round of DNA synthesis by platelet-derived growth factor (PDGF), epidermal growth factor (EGF), or transforming growth factor type beta 1 (TGF-beta 1). This one-time stimulation is independent of other serum components. The kinetics for induction of DNA synthesis observed for PDGF, EGF, and TGF-beta 1 are all similar to one another, with a peak of DNA synthesis occurring 24-36 h after the addition of the growth factors. Repetitive rounds of DNA synthesis and cell division do not ensue after addition of PDGF, EGF, or TGF-beta 1 alone or in combination; however, in media supplemented with chemically denatured serum, each of these factors is capable of sustaining continuous replication of mesothelial cells. Stimulation of growth by PDGF and TGF-beta 1 is unusual for an epithelial cell type, and indicates that mesothelial cells have growth regulatory properties similar to connective tissue cells.  相似文献   

19.
Addition of serum to quiescent cultures of 3T3 cells rapidly increases lactic acid formation and subsequently stimulates cell division. The stimulation of lactic acid production is seen at high, saturating concentrations of extra-cellular glucose. It is dependent on the time of exposure and on the dose of serum and is not blocked by the addition of cycloheximide, puromycin, or actinomycin D. In contrast, serum only marginally affects glycolysis by rapidly growing 3T6 or SV40-3T3 cells. In addition to serum, epidermal growth factor (0.1 to 10 ng/ml) and insulin (10 to 500 ng/ml) cause a striking stimulation of glycolysis in quiescent 3T3 cells. Neither exogenous cyclic nucleotides nor ouabain effect the glycolytic response, but the presence of Ca2+ markedly influences the activation of glycolysis by epidermal growth factor and by insulin. A novel finding in this study is that homogenates prepared from quiescent cells treated with serum, epidermal growth factor, or insulin show increased glycolysis as compared with homogenates from nonstimulated cultures. This finding will allow further experimental analysis of the cause of increased glycolysis in rapidly proliferating cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号