首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examined the role of mitogen-activated protein kinases (MAPKs) and phosphatidylinositol-3 kinase-stimulated Akt (PI-3K/Akt) in the regulation of constitutive human neutrophil apoptosis by bacterial lipopolysaccharide (LPS) and two chemoattractants, fMLP and leukotriene B(4) (LTB(4)). LPS and LTB(4) inhibited apoptosis, while fMLP had no effect. Inhibition of extracellular signal-regulated kinase (ERK) with PD098059 significantly inhibited the anti-apoptotic effect of both LPS and LTB(4), while inhibition of p38 kinase with SB203580 had no effect. Inhibition of PI-3K with wortmannin and LY294002 significantly attenuated the anti-apoptotic effect of LTB(4), but not LPS. LPS, fMLP, and LTB(4) stimulated similar levels of ERK and Akt activation. LTB(4) and LPS inhibited neutrophil apoptosis when added simultaneously with fMLP, and LTB(4) and LPS demonstrated an additive effect. We conclude that the ERK and/or PI-3K/Akt pathways are necessary, but not sufficient, for LPS and LTB(4) to delay apoptosis, but other anti-apoptotic pathways remain to be identified.  相似文献   

2.
In human neutrophils, both changes in intracellular Ca(2+) concentrations, [Ca(2+)]i, and activation of phosphatidylinositol-3 kinase (PtdIns3K) have been proposed to play a role in regulating cellular function induced by chemoattractants. In this study we have investigated the role of [Ca(2+)]i and its effector molecule calmodulin in human neutrophils. Increased [Ca(2+)]i alone was sufficient to induce phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2), p38 mitogen activated kinase (p38 MAPK), protein kinase B (PKB) and glycogen synthase kinase-3alpha (GSK-3alpha). Inhibition of calmodulin using a calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7), did not effect N-formyl-methionyl-leucyl-phenylalanine (fMLP) induced ERK, p38 MAPK or GSK-3alpha phosphorylation, but attenuated fMLP induced PKB phosphorylation. PCR analysis of human neutrophil cDNA demonstrated variable expression of members of the Ca(2+)/calmodulin-dependent kinase family. The roles of calmodulin and PtdIns3K in regulating neutrophil effector functions were further compared. Neutrophil migration was abrogated by inhibition of calmodulin, while no effect was observed when PtdIns3K was inhibited. In contrast, production of reactive oxygen species was sensitive to inhibition of both calmodulin and PtdIns3K. Finally, we demonstrated that chemoattractants are unable to modulate neutrophil survival, despite activation of PtdIns3K and elevation [Ca(2+)]i. Taken together, our data indicate critical roles for changes in [Ca(2+)]i and calmodulin activity in regulating neutrophil migration and respiratory burst and suggest that chemoattractant induced PKB phosphorylation may be mediated by a Ca(2+)/calmodulin sensitive pathway in human neutrophils.  相似文献   

3.
Respiratory burst mediates crucial bactericidal mechanism in neutrophils. However, undesirable respiratory burst leads to pathological inflammation and tissue damage. This study investigates the effect and the underlying mechanism of 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,7-dimethoxy-4H-chromen-4-one (MSF-2), a lignan extracted from the fruit of Melicope Semecarprifolia, on fMLP-induced respiratory burst in human neutrophils and suggests a possible therapeutic approach to ameliorate disease associated with neutrophil hyperactivation. MSF-2 inhibited fMLP-induced neutrophil superoxide anion production, cathepsin G release and migration in human neutrophils isolated from healthy volunteers, reflecting inhibition of phosphatidylinositol 3-kinase (PI3K) activation. Specifically, PI3K/AKT activation results in migration, degranulation and superoxide anion production in neutrophils. MSF-2 suppresses PI3K activation and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production, and consequently inhibits downstream activation of PDK1 and AKT. Further, PI3K also stimulates respiratory burst via PLC-dependent elevation of intracellular calcium. MSF-2 reduces fMLP-mediated PLCγ2 activation and intracellular calcium accumulation notably through extracellular calcium influx in a PI3K and PLC-dependent manner. However, MSF-2 is not a competitive or allosteric antagonist of fMLP. Additionally, in an in vivo study, MSF-2 prevents fMLP-induced neutrophil infiltration and inflammation in mice. In conclusion, MSF-2 opposes fMLP-mediated neutrophil activation and inflammation by inhibiting PI3K activation and subsequent activation of AKT and PLCγ2.  相似文献   

4.
Respiratory burst activity and phosphorylation of an NADPH oxidase component, p47(phox), during neutrophil stimulation are mediated by phosphatidylinositol 3-kinase (PI-3K) activation. Products of PI-3K activate several kinases, including the serine/threonine kinase Akt. The present study examined the ability of Akt to regulate neutrophil respiratory burst activity and to interact with and phosphorylate p47(phox). Inhibition of Akt activity in human neutrophils by an inhibitory peptide significantly attenuated fMLP-stimulated, but not PMA-stimulated, superoxide release. Akt inhibitory peptide also inhibited hydrogen peroxide generation stimulated by bacterial phagocytosis. A direct interaction between p47(phox) and Akt was shown by the ability of GST-p47(phox) to precipitate recombinant Akt and to precipitate Akt from neutrophil lysates. Active recombinant Akt phosphorylated recombinant p47(phox) in vitro, as shown by (32)P incorporation, by a mobility shift change detected by two-dimensional gel electrophoresis, and by immunoblotting with phospho-Akt substrate Ab. Mutation analysis indicated that 2 aa residues, Ser(304) and Ser(328), were phosphorylated by Akt. Inhibition of Akt activity also inhibited fMLP-stimulated neutrophil chemotaxis. We propose that Akt mediates PI-3K-dependent p47(phox) phosphorylation, which contributes to respiratory burst activity in human neutrophils.  相似文献   

5.
Certain microbial substances, e.g., LPS, can activate neutrophils or prime them to enhance their response to other activating agents, e.g., fMLP. We investigated the role of the Mycobacterium tuberculosis (MTB) 19-kDa lipoprotein in activation of human neutrophils. MTB 19-kDa lipoprotein initiated phenotypic changes characteristic of neutrophil activation, including down-regulation of CD62 ligand (L-selectin) and up-regulation of CD35 (CR1) and CD11b/CD18 (CR3, Mac-1). In addition, exposure of neutrophils to MTB 19-kDa lipoprotein enhanced the subsequent oxidative burst in response to fMLP as assessed by oxidation of dihydrorhodamine 123 (determined by flow cytometry). LPS also produced these effects with similar kinetics, but an oligodeoxynucleotide containing a CpG motif failed to induce any priming or activation response. Although the effects of LPS required the presence of serum, neutrophil activation by MTB 19-kDa lipoprotein occurred independently of serum factors, suggesting the involvement of different receptors and signaling mechanisms for LPS and MTB 19-kDa lipoprotein. Thus, MTB 19-kDa lipoprotein serves as a pathogen-associated molecular pattern that promotes neutrophil priming and activation.  相似文献   

6.
The legionellae are facultative intracellular bacterial pathogens which multiply in host phagocytes. Legionella micdadei cells contain an acid phosphatase (ACP2) which blocks superoxide anion production by human neutrophils stimulated with formyl-Met-Leu-Phe (fMLP) [A. K. Saha, et al. (1985) Arch. Biochem. Biophys. 243, 150-160]. In the present study, we have purified the Legionella phosphatase to homogeneity as indicated by the finding of a single 68,000-Da band following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We explored the possibility that ACP2 acts by interfering with polyphosphoinositide hydrolysis and the production of the intracellular second messengers, inositol trisphosphate (IP3) and diacylglycerol, following neutrophil stimulation. Phosphatidylinositol 4,5-bisphosphate (PIP2) was hydrolyzed rapidly by ACP2 in vitro. The rate of hydrolysis of PIP2 was higher at pH 7.0 (Km 2.0 microM; 4 X 10(3) units/mg protein; 1 unit equals 1 nmol of Pi released/h) than at lower pH. IP3 was also a good substrate for ACP2 in vitro. When human neutrophil phosphoinositides were prelabeled with 32Pi, subsequent incubation with ACP2 resulted in an 85% loss of the labeled PIP2 over 2 h. Following fMLP stimulation of [3H]inositol-labeled neutrophils, the quantity of IP3 produced by ACP2-treated cells was reduced by 44%. Prior treatment of neutrophils with ACP2 also reduced by 45% the amount of diacylglycerol they produced when stimulated by fMLP. These results indicate that the Legionella phosphatase may compromise the neutrophils' microbicidal response to the organism by hydrolyzing PIP2, the progenitor of IP3 and diacylglycerol, and by hydrolyzing IP3 itself.  相似文献   

7.
The level of expression of neutrophil adhesion molecules may be a useful marker for neutrophil activation in clinical studies. We therefore determined neutrophil integrin expression under various experimental conditions using a Fluorescence Activated Cell Sorter (FACS) after the cells had been labelled with fluorescent conjugated antibodies to the integrin subunits CD11a, CD11b and CD18. Levels of labelled CD11b and CD18 increased after activation with the chemotactic peptide formyl-methionyl-leucyl phenylalanine (fMLP) in a dose- and time-dependent manner, but CD11a did not, indicating that CD11a would not be a useful marker of neutrophil activation. The baseline expression of CD11b and CD18 on unstimulated neutrophils was similar in heparin and EDTA anti-coagulated blood but the response to activation with fMLP was significantly less for the EDTA anti-coagulated samples (p < 0·01 in paired t-test). The labelling of integrins was significantly higher in unfixed whole blood samples compared to samples fixed with 1 per cent paraformaldehyde. However, the increase in labelling induced by fMLP was similar whether or not the samples were fixed after activation. Labelling of CD11b and CD18 was greater for preparations of isolated neutrophils than for neutrophils in whole blood, and the response to fMLP stimulation tended to be lower for the isolated cells. Our results indicate that heparin should be used as anti-coagulant in clinical studies utilizing whole blood if subsequent activation of neutrophils is planned (e.g. to detect in vivo priming), although EDTA may be used if baseline expression alone is to be measured. Fixation of blood samples should not affect the ability to detect neutrophil activation.  相似文献   

8.
Prostaglandin E1 (PGE1) treatment of neutrophils inhibits their adherence to substrates in vitro, including endothelial cell monolayers. Demonstration that PGE1 inhibits neutrophil adherence in vivo in the lung, however, is complicated by PGE1 effects on cells other than neutrophils, such as endothelial cells. To determine whether PGE1 inhibits neutrophil adherence properties in vivo, we used air emboli as intravascular targets for neutrophil attachment. Four experimental conditions were studied in anesthetized and awake sheep that were treated with 1) PGE1 and air emboli, 2) saline and air emboli, 3) PGE1 and zymosan-activated plasma (ZAP) + air emboli, and 4) saline and ZAP + air emboli. PGE1 (30 ng.kg-1.min-1) or saline was infused continuously 1 h before and 1 h during the infusion of air emboli (group 1; n = 13 sheep) or ZAP + air emboli (group 2; n = 13 sheep). The number of neutrophils (PMNs) attached to air emboli in four anesthetized sheep per condition was significantly less in sheep given PGE1 and ZAP + air emboli [8 +/- 3 (SD) PMNs/mm of embolus perimeter] than in the other three conditions (14-21 PMNs/mm; P less than 0.05). Repeated experiments in five awake sheep per group showed that PGE1 treatment did not prevent increased lung lymph protein clearance in either group compared with saline treatment. We conclude that PGE1 specifically inhibited attachment of ZAP-activated neutrophils to air emboli in vivo. The lack of pathophysiological protection suggests that PGE1-induced alterations in neutrophil attachment properties were independent of other cellular activation responses.  相似文献   

9.
The microfilament lattice, composed primarily of filamentous (F)-actin, determines in large part the mechanical (deformability) properties of neutrophils, and thus may regulate the ability of neutrophils to transit a microvascular bed. Circulating factors may stimulate the neutrophil to become rigid and therefore be retained in the capillaries. We hypothesized that cell stiffening might be attenuated by an increase in intracellular cAMP. A combination of cell filtration and cell poking (mechanical indentation) was used to measure cell deformability. Neutrophils pretreated with dibutyryl cAMP (db-cAMP) or the combination of prostaglandin E2 (PGE2, a stimulator of adenylate cyclase) and isobutylmethylxanthine (IBMX, an inhibitor of phosphodiesterase) demonstrated significant inhibition of the n-formyl-methionyl-leucyl-phenylalanine (fMLP)-inducing stiffening. The inhibition of cell stiffening was associated with an increase in intracellular cAMP as measured by enzyme-linked immunoassay (EIA) and an increase in the activity of the cAMP-dependent kinase (A-kinase). Treatment with PGE2 and IBMX also resulted in a decrease in the F-actin content of stimulated neutrophils as assayed by NBD-phallacidin staining and flow cytometry or by changes in right angle light scattering. Direct addition of cAMP to electropermeabilized neutrophils resulted in attenuation of fMLP-induced actin assembly. Neutrophils stimulated with fMLP demonstrated a rapid redistribution of F-actin from a diffuse cortical location to a peripheral ring as assessed by conventional and scanning confocal fluorescence microscopy. Pretreatment of neutrophils with the combination of IBMX and PGE2 resulted in incomplete development and fragmentation of the cortical ring. We conclude that assembly and redistribution of F-actin may be responsible for cell stiffening after exposure to stimulants and that this response was attenuated by agents that increase intracellular cAMP, by altering the amount and spatial organization of the microfilament component of the cytoskeleton.  相似文献   

10.
Microcystins (MCs) produced by some freshwater cyanobacterial species possess potent liver toxicity as evidenced by acute neutrophil infiltration. Here, we investigate the ability of three structurally distinct toxins (MC-LA, MC-LR, and MC-YR) to evoke neutrophil recruitment per se and their effects on migration pathways. Intravital microscopic studies showed that topical application of only MC-LR enhanced the numbers of rolling and adhered leukocytes in the endothelium of postcapillary mesenteric venules. The latter effects may be dependent upon induction of the synthesis and expression of l-selectin and β2-integrin in neutrophils, as assessed by flow cytometry and RT-PCR, respectively. Conversely, the three toxins promoted direct locomotion of neutrophils and enhanced their migration in response to fMLP, as measured by Boyden chamber assays, and increased intracellular calcium, a messenger in the chemotaxic process. In conclusion, our results show that MCs act on specific pathways of neutrophil recruitment, indicating their potential effect on neutrophils activation.  相似文献   

11.
The chemotactic peptide formyl-methionyl-leucyl-phenilalanine (fMLP) triggers intracellular protein tyrosine phosphorylation leading to neutrophil activation. Deficiency of the Src family kinases Hck and Fgr have previously been found to regulate fMLP-induced degranulation. In this study, we further investigate fMLP signaling in hck-/-fgr-/- neutrophils and find that they fail to activate a respiratory burst and display reduced F-actin polymerization in response to fMLP. Additionally, albeit migration of both hck-/-fgr-/-mouse neutrophils and human neutrophils incubated with the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) through 3-microm pore size Transwells was normal, deficiency, or inhibition, of Src kinases resulted in a failure of neutrophils to migrate through 1-microm pore size Transwells. Among MAPKs, phosphorylation of ERK1/2 was not different, phosphorylation of p38 was only partially affected, and phosphorylation of JNK was markedly decreased in fMLP-stimulated hck-/-fgr-/- neutrophils and in human neutrophils incubated with PP2. An increase in intracellular Ca(2+) concentration and phosphorylation of Akt/PKB occurred normally in fMLP-stimulated hck-/-fgr-/- neutrophils, indicating that activation of both phosphoinositide-specific phospholipase C and PI3K is independent of Hck and Fgr. In contrast, phosphorylation of the Rho/Rac guanine nucleotide exchange factor Vav1 and the Rac target p21-activated kinases were markedly reduced in both hck-/-fgr-/- neutrophils and human neutrophils incubated with a PP2. Consistent with these findings, PP2 inhibited Rac2 activation in human neutrophils. We suggest that Hck and Fgr act within a signaling pathway triggered by fMLP receptors that involves Vav1 and p21-activated kinases, leading to respiratory burst and F-actin polymerization.  相似文献   

12.
Priming of human neutrophils with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by treatment with formyl-methionyl-leucyl-phenylalanine (fMLP) stimulates cells in a physiologically relevant manner with modest 5-lipoxygenase activation and formation of leukotrienes. However, pretreatment of neutrophils with thimerosal, an organomercury thiosalicylic acid derivative, led to a dramatic increase (>50-fold) in the production of leukotriene B(4) and 5-hydroxyeicosatetraenoic acid, significantly higher than that observed after stimulation with calcium ionophore A23187. Little or no effect was observed with thimerosal alone or in combination with either GM-CSF or fMLP. Elevation of [Ca(2+)](i) induced by thimerosal in neutrophils stimulated with GM-CSF/fMLP was similar but more sustained compared with samples where thimerosal was absent. However, [Ca(2+)](i) was significantly lower compared with calcium ionophore-treated cells, suggesting that a sustained calcium rise was necessary but not sufficient to explain the effects of this compound on the GM-CSF/fMLP-stimulated neutrophil. Thimerosal was found to directly inhibit neutrophil lysophospholipid:acyl-CoA acyltransferase activity at the doses that stimulate leukotriene production, and analysis of lysates from neutrophil preparations stimulated in the presence of thimerosal showed a marked increase in free arachidonic acid, supporting the inhibition of the reincorporation of this fatty acid into the membrane phospholipids as a mechanism of action for this compound. The dramatic increase in production of leukotrienes by neutrophils when a physiological stimulus such as GM-CSF/fMLP is employed in the presence of thimerosal suggests a critical regulatory role of arachidonate reacylation that limits leukotriene biosynthesis in concert with 5-lipoxygenase and cytosolic phospholipase A(2)alpha activation.  相似文献   

13.
Treponema denticola major outer sheath protein (Msp) inhibits neutrophil chemotaxis in vitro , but key regulatory mechanisms have not been identified. Because the Rac small GTPases regulate directional migration in response to chemoattractants, the objective was to analyse the effects of Msp on formyl -methionyl-leucyl-phenylalanine (fMLP)-mediated neutrophil polarization and Rac activation in murine neutrophils. Msp pretreatment of neutrophils inhibited both polarization and chemotactic migration in response to fMLP. Activation of small GTPases was measured by p21 binding domain (PBD) pulldown assays, followed by Western analysis, using monoclonal anti-Rac1, anti-Rac2, anti-cdc42 and anti-RhoA antibodies. Enriched native Msp selectively inhibited fMLP-stimulated Rac1 activation in a concentration-dependent manner, but did not affect Rac2, cdc42 or RhoA activation. Murine neutrophils transfected with vectors expressing fluorescent probes PAK-PBD-YFP and PH-AKT-RFP were used to determine the effects of Msp on the localization of activated Rac and PI3 kinase products. Real-time confocal images showed that Msp inhibited the polarized accumulation of activated Rac and PI3-kinase products upon exposure to fMLP. The findings indicate that T. denticola Msp inhibition of neutrophil polarity may be due to the selective suppression of the Rac1 pathway.  相似文献   

14.
In this study, we have investigated the Ca2+ requirements for the activation of phospholipase D by the tripeptide fMet-Leu-Phe (fMLP) in human neutrophils. EGTA inhibited the activation of phospholipase D (PLD) by 55% (n = 4). When the initial transient rise in [Ca2+]i was prevented by loading the cells with limited amounts of the Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), PLD activation was inhibited by 92% (n = 4). In the presence of both chelators, PLD activation was only 4% of control. In electropermeabilized neutrophils, too, the activation of PLD after the addition of fMLP strongly depends on the Ca2+ concentration, being almost absent with 100 nM free Ca2+ present and reaching maximum activation with a free [Ca2+] of 500 nM. We subsequently investigated the relationship between PLD activation and the activation of the respiratory burst. In neutrophils loaded with BAPTA/AM (10 microM), in which PLD activation was almost absent, a respiratory burst could be induced by fMLP, albeit with a much longer lag time. A respiratory burst could also be elicited by fMLP in electropermeabilized neutrophils incubated with 100 nM free Ca2+. This response, however, was strongly enhanced in the presence of 1 microM Ca2+. Our results indicate that changes in [Ca2+]i are essential for the activation of PLD by fMLP, but probably do not constitute the sole activation signal. In addition, our data provide evidence that PLD activation is important, but not necessary, for activation of the neutrophil respiratory burst.  相似文献   

15.
Neutrophil activation by a variety of stimuli is accompanied by an intracellular acidification, which has been postulated to mediate actin polymerization (Yuli and Oplatka, Science 1987, 235, 340). This hypothesis was tested using 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin staining and flow cytometry, or right angle light scattering to study actin assembly in intact and electrically permeabilized human neutrophils. Intracellular pH was measured fluorimetrically using a pH sensitive dye. In cells stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) at 21 degrees C, actin assembly clearly preceded the intracellular acidification in response to fMLP. Moreover, actin polymerization persisted in cells where intracellular pH was clamped near the resting (unstimulated) level using nigericin/K+. Finally, fMLP induced a significant increase in F-actin content in electropermeabilized neutrophils equilibrated with an extracellular medium containing up to 50 mM HEPES. These observations indicate that fMLP-stimulated F-actin assembly is not mediated by a decrease in intracellular pH and suggest that changes in transmembrane potential and ionic gradients are unlikely to mediate actin polymerization.  相似文献   

16.
Protein I, the major outer membrane protein of Neisseria gonorrhoeae, is a voltage-dependent anion channel which can translocate from the gonococcus into human cells. Since granule exocytosis from neutrophils is regulated by ion fluxes, we examined the effect of protein I on neutrophil activation. Pretreatment with protein I (250 nM) impaired degranulation from neutrophils: beta-glucuronidase release decreased to 27 +/- 6% S.E. of cells treated with N-f-Met-Leu-Phe (fMLP, 0.1 microM) and to 13 +/- 4% of cells treated with leukotriene B4 (LTB4, 0.1 microM); lysozyme release decreased to 52 +/- 17% of fMLP-treated cells and 22 +/- 9% of LTB4-treated cells. Morphometric analysis was consistent: control neutrophils increased their surface membrane after fMLP (43.3 +/- 5.6 microns relative perimeter versus 71.4 +/- 3.7 microns) while protein I-treated neutrophils did not (29.4 +/- 2 (S.E.) microns relative perimeter versus 34 +/- 4 microns). Enzyme release after exposure to phorbol myristate acetate was not affected (lysozyme: 86 +/- 27% of control). Cell/cell aggregation in response to fMLP was inhibited by treatment with protein I. However, generation of O2 was not affected. Protein I altered the surface membrane potential (Oxonol V): protein I evoked a transient membrane hyperpolarization which was not inhibited by furosemide. After exposure to fMLP, protein I-treated neutrophils underwent a furosemide-sensitive hyperpolarization rather than the usual depolarization. Protein I did not alter increments in [Ca]i (Fura-2) stimulated by fMLP (460 +/- 99 nM (S.E.) versus 377 +/- 44 nM) nor decrements in [pH]i (7.22 +/- 0.04 S.E. versus 7.22 +/- 0.02, bis-(carboxy-ethyl)carboxyfluorescein). The results suggest that degranulation and O2 generation have separate ionic requirements and that protein I interrupts the activation sequence proximal to activation of protein kinase C.  相似文献   

17.
Major trauma such as severe bums and extensive surgery could result in accelerated macrophage differentiation and hyperactivation causing an excessive release of proinflammatory cytokines and prostaglandin E2 (PGE2) with consequent severe impairment of immunologic reactivity. HL-60 cells stimulated with phorbol 12-myristate 13-acetate (PMA) have been used as a model to asses the PGE2 role in the macrophage differentiation observed after major trauma. Cell adhesion, matrix metalloproteinase-9 (MMP-9) and tumor necrosis factor-alpha (TNF-alpha) production were measured after 24 h of PMA treatment in the presence of PGE2 (1 nM - 1 microM). PGE2 increased both the PMA-induced cell adhesion and MMP-9 production via EP2/EP4 receptors while it had no effect on the induced TNF-alpha release. The cAMP/PKA pathway, usually linked to EP2/EP4 activation, was not involved in the phenomenon, suggesting that an alternative signalling pathway could be linked to a PKC-activated enzyme. In fact PGE2 activity was partially inhibited by Wortmannin, a phosphoinositide-3 kinase (PI-3K) inhibitor indicating that PGE2 act as a co-factor able to increase macrophage differentiation in vitro via a PI-3K dependent pathway that could be also involved in the immunosuppression observed in the aftermath of trauma.  相似文献   

18.
Leukotriene B4 (5S,12R-dihydroxy-6,14-cis,8,10-trans-eicosatetraenoic acid, LTB4) is released from neutrophils exposed to calcium ionophores. To determine whether LTB4 might be produced by ligand-receptor interactions at the plasmalemma, we treated human neutrophils with serum-treated zymosan (STZ), heat-aggregated IgG and fMet-Leu-Phe (fMLP), agonists at the C3b, Fc and fMLP receptors respectively. STZ (10 mg/ml) provoked the formation of barely detectable amounts of LTB4 (0.74 ng/10(7) cells); no omega-oxidized metabolites of LTB4 were found. Adding 10 microM-arachidonate did not significantly increase production of LTB4 or its metabolites. Addition of 50 microM-arachidonate (an amount which activates protein kinase C) before STZ caused a 40-fold increase in the quantity of LTB4 and its omega-oxidation products. Neither phorbol myristate acetate (PMA, 200 ng/ml) nor linoleic acid (50 microM), also activators of protein kinase C, augmented generation of LTB4 by cells stimulated with STZ. Neither fMLP (10(-6) M) nor aggregated IgG (0.3 mg/ml) induced LTB4 formation (less than 0.01 ng/10(7) cells). Moreover, cells exposed to STZ, fMLP, or IgG did not form all-trans-LTB4 or 5-hydroxyeicosatetraenoic acid; their failure to make LTB4 was therefore due to inactivity of neutrophil 5-lipoxygenase. However, adding 50 microM-arachidonate to neutrophil suspensions before fMLP or IgG triggered LTB4 production, the majority of which was metabolized to its omega-oxidized products (fMLP, 20.2 ng/10(7) cells; IgG, 17.1 ng/10(7) cells). The data show that neutrophils exposed to agonists at defined cell-surface receptors produce significant quantities of LTB4 only when treated with non-physiological concentrations of arachidonate.  相似文献   

19.
Neutrophils play a central role in host defense and are recruited in vast numbers to sites of infection where they phagocytose and kill invading bacterial pathogens. Neutrophils have a short half-life that is extended at the inflamed site by pro-inflammatory cytokines and contact with bacterial cell walls. Normal resolution of inflammation involves the removal of neutrophils and other inflammatory cells by the induction of apoptosis. Spontaneous neutrophil apoptosis does not require Fas ligation, but is mediated by caspases 3, 8 and possibly caspase 9 and also involves activation of protein kinase C-. With chronic inflammatory disease, neutrophil apoptosis is delayed by pro-inflammatory cytokines, leading to persistence of neutrophils at the inflamed site and non-specific tissue damage. Here we discuss the evidence for inhibition of neutrophil apoptosis via signaling though PI-3-kinase and downstream pathways, including PDK-1 and PKB. Therapeutic strategies to resolve chronic inflammation could therefore usefully target neutrophil apoptosis and the PI-3-kinase or PKC- signaling pathways.  相似文献   

20.
AGEs (advanced glycation end-products) accumulate in collagen molecules during uraemia and diabetes, two diseases associated with high susceptibility to bacterial infection. Because neutrophils bind to collagen during their locomotion in extravascular tissue towards the infected area we investigated whether glycoxidation of collagen (AGE-collagen) alters neutrophil migration. Type I collagen extracted from rat tail tendons was used for in vitro glycoxidation (AGE-collagen). Neutrophils were obtained from peripheral blood of healthy adult volunteers and were used for the in vitro study of adhesion and migration on AGE- or control collagen. Glycoxidation of collagen increased adhesion of neutrophils to collagen surfaces. Neutrophil adhesion to AGE-collagen was inhibited by a rabbit anti-RAGE (receptor for AGEs) antibody and by PI3K (phosphoinositide 3-kinase) inhibitors. No effect was observed with ERK (extracellular-signal-regulated kinase) or p38 MAPK (mitogen-activated protein kinase) inhibitors. AGE-collagen was able to: (i) induce PI3K activation in neutrophils, and (ii) inhibit chemotaxis and chemokinesis of chemoattractant-stimulated neutrophils. Finally, we found that blocking RAGE with anti-RAGE antibodies or inhibiting PI3K with PI3K inhibitors restored fMLP (N-formylmethionyl-leucyl-phenylalanine)-induced neutrophil migration on AGE-collagen. These results show that RAGE and PI3K modulate adhesion and migration rate of neutrophils on AGE-collagen. Modulation of adhesiveness may account for the change in neutrophil migration rate on AGE-collagen. As neutrophils rely on their ability to move to perform their function as the first line of defence against bacterial invasion, glycoxidation of collagen may participate in the suppression of normal host defence in patients with diabetes and uraemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号