首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Roy  S Keblawi  M F Dunn 《Biochemistry》1988,27(18):6698-6704
The reactions of the indole analogues indoline and aniline with the Escherichia coli tryptophan synthase alpha-aminoacrylate Schiff base intermediate have been characterized by UV-visible and 1H NMR absorption spectroscopy and compared with the interactions of indole and the potent inhibitor benzimidazole. Indole, via the enamine functionality of the pyrrole ring, reacts with the alpha-aminoacrylate intermediate, forming a transient quinonoid species with lambda max 476 nm as the new C-C bond is synthesized. Conversion of this quinonoid to L-tryptophan is the rate-limiting step in catalysis [Lane, A., & Kirschner, K. (1981) Eur. J. Biochem. 120, 379-398]. Both aniline and indoline undergo rapid N-C bond formation with the alpha-aminoacrylate to form quinonoid intermediates; benzimidazole binds rapidly and tightly to the alpha-aminoacrylate but does not undergo covalent bond formation. The indoline and aniline quinonoids (lambda max 464 and 466 nm, respectively) are formed via nucleophilic attack on the electrophilic C-beta of the alpha-aminoacrylate. The indoline quinonoid decays slowly, yielding a novel, new amino acid, dihydroisotryptophan. The aniline quinonoid is quasi-stable, and no new amino acid product was detected. We conclude that nucleophilic attack requires the precise alignment of bonding orbitals between nucleophile and the alpha-aminoacrylate intermediate. The constraints imposed by the geometry of the indole subsite force the aromatic rings of indoline, aniline, and benzimidazole to bind in the same plane as indole; thus nucleophilic attack occurs with the N-1 atoms of indoline and aniline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Tryptophanase from Escherichia coli was oriented in a compressed slab of polyacrylamide gel and its linear dichroism (LD) and absorption spectra have been measured. The free enzyme displays four LD bands at 305, 340, 425 and 490 nm. Two bands at 340 and 425 nm belong to the internal coenzyme-lysine aldimine. The 305-nm band apparently belongs to an aromatic amino acid residue. The 490-nm band disappears after treatment with NaBH4 or after incubation with L-alanine and subsequent dialysis. It is suggested that the 490-nm band belongs to a quinonoid enzyme subform. The reaction of tryptophanase with threo-3-phenyl-DL-serine, L-threonine and D-alanine leads to formation of an external aldimine with an intense absorption band at 420-425 nm. The values of reduced LD (delta A/A) in this band strongly differ from that in the 420-nm band of the free enzyme. The LD value of the complex with D-alanine is intermediate between those of the free enzyme and the complex with 3-phenylserine. In the presence of indole the complex with D-alanine displays the same LD as that observed with 3-phenylserine. The reaction of tryptophanase with L-alanine or oxindolyl-L-alanine leads to formation of a quinonoid intermediate with an absorption band near 500 nm. The LD value in this band is close to that of an external aldimine with L-threonine. It is concluded that reorientations of the coenzyme occur in the course of the tryptophanase reaction.  相似文献   

3.
The bacterial tryptophan synthase alpha(2)beta(2) complex catalyzes the final reactions in the biosynthesis of L-tryptophan. Indole is produced at the active site of the alpha-subunit and is transferred through a 25-30 A tunnel to the beta-active site, where it reacts with an aminoacrylate intermediate. Lane and Kirschner proposed a two-step nucleophilic addition-tautomerization mechanism for the reaction of indole with the aminoacrylate intermediate, based on the absence of an observed kinetic isotope effect (KIE) when 3-[(2)H]indole reacts with the aminoacrylate intermediate. We have now observed a KIE of 1.4-2.0 in the reaction of 3-[(2)H]indole with the aminoacrylate intermediate in the presence of monovalent cations, but not when an alpha-subunit ligand, disodium alpha-glycerophosphate (Na(2)GP), is present. Rapid-scanning stopped flow kinetic studies were performed of the reaction of indole and 3-[(2)H]indole with tryptophan synthase preincubated with L-serine, following the decay of the aminoacrylate intermediate at 350 nm, the formation of the quinonoid intermediate at 476 nm, and the formation of the L-Trp external aldimine at 423 nm. The addition of Na(2)GP dramatically slows the rate of reaction of indole with the alpha-aminoacrylate intermediate. A primary KIE is not observed in the reaction of 3-[(2)H]indole with the aminoacrylate complex of tryptophan synthase in the presence of Na(2)GP, suggesting binding of indole with tryptophan synthase is rate limiting under these conditions. The reaction of 2-methylindole does not show a KIE, either in the presence of Na(+) or Na(2)GP. These results support the previously proposed mechanism for the beta-reaction of tryptophan synthase, but suggest that the rate limiting step in quinonoid intermediate formation from indole and the aminoacrylate intermediate is deprotonation.  相似文献   

4.
The binding of substrates and inhibitors to wild-type Proteus vulgaris tryptophan indole-lyase and to wild type and Y71F Citrobacter freundii tyrosine phenol-lyase was investigated in the crystalline state by polarized absorption microspectrophotometry. Oxindolyl-lalanine binds to tryptophan indole-lyase crystals to accumulate predominantly a stable quinonoid intermediate absorbing at 502 nm with a dissociation constant of 35 microm, approximately 10-fold higher than that in solution. l-Trp or l-Ser react with tryptophan indole-lyase crystals to give, as in solution, a mixture of external aldimine and quinonoid intermediates and gem-diamine and external aldimine intermediates, respectively. Different from previous solution studies (Phillips, R. S., Sundararju, B., & Faleev, N. G. (2000) J. Am. Chem. Soc. 122, 1008-1114), the reaction of benzimidazole and l-Trp or l-Ser with tryptophan indole-lyase crystals does not result in the formation of an alpha-aminoacrylate intermediate, suggesting that the crystal lattice might prevent a ligand-induced conformational change associated with this catalytic step. Wild-type tyrosine phenol-lyase crystals bind l-Met and l-Phe to form mixtures of external aldimine and quinonoid intermediates as in solution. A stable quinonoid intermediate with lambda(max) at 502 nm is accumulated in the reaction of crystals of Y71F tyrosine phenol-lyase, an inactive mutant, with 3-F-l-Tyr with a dissociation constant of 1 mm, approximately 10-fold higher than that in solution. The stability exhibited by the quinonoid intermediates formed both by wild-type tryptophan indole-lyase and by wild type and Y71F tyrosine phenol-lyase crystals demonstrates that they are suitable for structural determination by x-ray crystallography, thus allowing the elucidation of a key species of pyridoxal 5'-phosphate-dependent enzyme catalysis.  相似文献   

5.
Tryptophanase from E. coli displays positive CD in the coenzyme absorption bands at 337 and 420 nm. Breaking of the internal coenzyme-lysine imine bond upon reaction with hydroxylamine or amino-oxyacetate is accompanied by a strong diminution of the positive CD. Interaction of tryptophanase with L-threonine and beta-phenyl-DL-serine(threo form) leads to a decrease in absorbance at 337 nm and to an increase at 425 nm. This is associated with inversion of the CD sign, i.e. with disappearance of the positive CD in the 420-nm band and its replacement by a negative CD. L-Phenylalanine, alpha-methyl-DL-serine and D-alanine cause an increase in absorbance at 425-430 nm and a diminution of the positive CD in this band. In the presence of D-alanine and indole a negative CD appears in the 400-450 nm region. It is inferred that an external coenzyme-quasisubstrate aldimine is formed on interaction of the above amino acids with the enzyme. L-Alanine and oxindolyl-L-alanine evoke an intense narrow absorption band at 500 nm ascribed to a quinonoid intermediate; a positive CD is observed in this band. The dissymmetry factor delta A/A in the 500-nm band is much smaller than that in the absorption bands of the unliganded enzyme. Inversion of the CD sign on formation of the external aldimine and diminution of the dissymmetry factor in the quinonoid band indicate that reorientations of the coenzyme occur in the course of the catalytic action of tryptophanase.  相似文献   

6.
Cystathionine gamma-synthase catalyzes a pyridoxal phosphate dependent synthesis of cystathionine from O-succinyl-L-homoserine (OSHS) and L-cysteine via a gamma-replacement reaction. In the absence of L-cysteine, OSHS undergoes an enzyme-catalyzed, gamma-elimination reaction to form succinate, alpha-ketobutyrate, and ammonia. Since elimination of the gamma-substituent is necessary for both reactions, it is reasonable to assume that the replacement and elimination reaction pathways diverge from a common intermediate. Previously, this partitioning intermediate has been assigned to a highly conjugated alpha-iminovinylglycine quininoid (Johnston et al., 1979a). The experiments reported herein support an alternative assignment for the partitioning intermediate. We have examined the gamma-replacement and gamma-elimination reactions of cystathionine gamma-synthase via rapid-scanning stopped-flow and single-wavelength stopped-flow UV-visible spectroscopy. The gamma-elimination reaction is characterized by a rapid decrease in the amplitude of the enzyme internal aldimine spectral band at 422 nm with a concomitant appearance of a new species which absorbs in the 300-nm region. A 485-nm species subsequently accumulates in a much slower relaxation. The gamma-replacement reaction shows a red shift of the 422-nm peak to 425 nm which occurs in the experiment dead time (approximately 3 ms). This relaxation is followed by a decrease in absorbance at 425 nm that is tightly coupled to the appearance of a species which absorbs in the 300-nm region. Reaction of the substrate analogues L-alanine and L-allylglycine with cystathionine gamma-synthase results in bleaching of the 422-nm absorbance and the appearance of a 300-nm species. In the absence of L-cysteine, L-allylglycine undergoes facile proton exchange; in the presence of L-cysteine, L-allylglycine undergoes a gamma-replacement reaction to form a new amino acid, gamma-methylcystathionine. No long-wavelength-absorbing species accumulate during either of these reactions. These results establish that the partitioning intermediate is an alpha-imino beta,gamma-unsaturated pyridoxamine derivative with lambda max congruent to 300 nm and that the 485-nm species which accumulates in the elimination reaction is not on the replacement pathway.  相似文献   

7.
We have examined the binding of oxindolyl-L-alanine, (3R)-2,3-dihydro-L-tryptophan, L-homophenylalanine, and N1-methyl-L-tryptophan to tryptophan indole-lyase (tryptophanase) from Escherichia coli by using rapid-scanning and single-wavelength stopped-flow kinetic techniques. Rate constants for the reactions were determined by fitting the concentration dependencies of relaxations to either linear (pseudo-first-order) or hyperbolic (rapid second-order followed by slow first-order) equations. The reaction with oxindolyl-L-alanine forms a quinonoid intermediate that exhibits a strong peak at 506 nm. This species is formed more rapidly than with the other analogues (84.5 s-1) and is reprotonated very slowly (0.2 s-1). Reaction with L-homophenylalanine also forms a quinonoid intermediate with a strong peak at 508 nm, but the rate constant for its formation is slower (6.9 s-1). The reaction with L-homophenylalanine exhibits a transient intermediate absorbing at about 340 nm that decays at the same rate as the quinonoid peak forms and that may be a gem-diamine. Tryptophan indole-lyase reacts with (3R)-2,3-dihydro-L-tryptophan much more slowly to form a moderately intense quinonoid peak at 510 nm, and a transient intermediate absorbing at about 350 nm is also formed. The species formed in the reaction of N1-methyl-L-tryptophan exhibits a peak at 425 nm and a very weak quinonoid absorption peak at 506 nm, which is formed at less than 4 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Phillips RS  Holtermann G 《Biochemistry》2005,44(43):14289-14297
Escherichia coli tryptophan indole-lyase (Trpase) is a bacterial pyridoxal 5'-phosphate (PLP)-dependent enzyme which catalyzes the reversible beta-elimination of l-Trp to give indole and ammonium pyruvate. H463F mutant E. coli Trpase (H463F Trpase) has very low activity with l-Trp, but it has near wild-type activity with other in vitro substrates, such as S-ethyl-l-cysteine and S-(o-nitrophenyl)-l-cysteine [Phillips, R. S., Johnson, N., and Kamath, A. V. (2002) Formation in vitro of Hybrid Dimers of H463F and Y74F Mutant Escherichia coli Tryptophan Indole-lyase Rescues Activity with l-Tryptophan, Biochemistry 41, 4012-4019]. The interaction of H463F Trpase with l-Trp and l-Met, a competitive inhibitor, has been investigated by rapid-scanning stopped-flow, high-pressure, and pressure jump spectrophotometry. Both l-Trp and l-Met bind to H463F Trpase to form equilibrating mixtures of external aldimine and quinonoid intermediates, absorbing at approximately 420 and approximately 505 nm, respectively. The apparent rate constant for quinonoid intermediate formation exhibits a hyperbolic dependence on l-Trp and l-Met concentration. The rate constant for quinonoid intermediate formation from l-Trp is approximately 10-fold lower for H463F Trpase than for wild-type Trpase, but the rate constant for reaction of l-Met is similar for H463F Trpase and wild-type Trpase. The temperature dependence of the rate constants for quinonoid intermediate formation reveals that both l-Trp and l-Met have similar values of DeltaH(++), but l-Met has a more negative value of DeltaS(++). Hydrostatic pressure perturbs the spectra of the H463F l-Trp and l-Met complexes, by shifting the position of the equilibria between different quinonoid and external aldimine complexes. Pressure-jump experiments show relaxations at 500 nm after rapid pressure changes of 100-400 bar with both l-Trp and l-Met. The apparent rate constants for relaxation of l-Trp, but not l-Met, show a significant increase with pressure. From these data, the value of DeltaV(++) for quinonoid intermediate formation from the external aldimine of l-Trp can be estimated to be -26.5 mL/mol, a larger than expected negative value for a proton transfer. These results suggest that there may be a contribution to the deprotonation reaction either from quantum mechanical tunneling or from a mechanical coupling of protein motion and proton transfer associated with the reaction of l-Trp, but not with l-Met.  相似文献   

9.
Phillips RS  Chen HY  Faleev NG 《Biochemistry》2006,45(31):9575-9583
Tyrosine phenol-lyase (TPL) from Citrobacter freundii is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible hydrolytic cleavage of l-Tyr to give phenol and ammonium pyruvate. The proposed reaction mechanism for TPL involves formation of an external aldimine of the substrate, followed by deprotonation of the alpha-carbon to give a quinonoid intermediate. Elimination of phenol then has been proposed to give an alpha-aminoacrylate Schiff base, which releases iminopyruvate that ultimately undergoes hydrolysis to yield ammonium pyruvate. Previous stopped-flow kinetic experiments have provided direct spectroscopic evidence for the formation of the external aldimine and quinonoid intermediates in the reactions of substrates and inhibitors; however, the predicted alpha-aminoacrylate intermediate has not been previously observed. We have found that 4-hydroxypyridine, a non-nucleophilic analogue of phenol, selectively binds and stabilizes aminoacrylate intermediates in reactions of TPL with S-alkyl-l-cysteines, l-tyrosine, and 3-fluoro-l-tyrosine. In the presence of 4-hydroxypyridine, a new absorption band at 338 nm, assigned to the alpha-aminoacrylate, is observed with these substrates. Formation of the 338 nm peaks is concomitant with the decay of the quinonoid intermediates, with good isosbestic points at approximately 365 nm. The value of the rate constant for aminoacrylate formation is similar to k(cat), suggesting that leaving group elimination is at least partially rate limiting in TPL reactions. In the reaction of S-ethyl-l-cysteine in the presence of 4-hydroxypyridine, a subsequent slow reaction of the alpha-aminoacrylate is observed, which may be due to iminopyruvate formation. Both l-tyrosine and 3-fluoro-l-tyrosine exhibit kinetic isotope effects of approximately 2-3 on alpha-aminoacrylate formation when the alpha-(2)H-labeled substrates are used, consistent with the previously reported internal return of the alpha-proton to the phenol product. These results are the first direct spectroscopic observation of alpha-aminoacrylate intermediates in the reactions of TPL.  相似文献   

10.
W F Drewe  S C Koerber  M F Dunn 《Biochimie》1989,71(4):509-519
The reactions of the alpha 2 beta 2 complex of Escherichia coli tryptophan synthase with D- and L-Trp and the presteady-state reaction of L-Ser and beta-mercaptoethanol under different premixing conditions have been investigated by rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy. The reaction of alpha 2 beta 2 with L-Ser and beta-mercaptoethanol occurs in 3 detectable relaxations with rates similar to the 3 relaxations seen in the partial reaction with L-Ser and in the reaction with L-Ser and indole. The presteady-state phase of the reaction of beta-mercaptoethanol with the alpha-aminoacrylate intermediate is characterized by 2 relaxations. The RSSF spectra for this reaction show that the spectral changes that take place in these 2 phases are essentially identical. The L-Trp reaction is biphasic, and the spectral changes occurring in each phase of the reaction also are identical. The 2 new spectral bands formed (lambda max congruent to 420 nm and congruent to 476 nm) are assigned as the L-Trp external aldimine (Schiff's base) and L-Trp quinonoid intermediates, respectively. The reaction of D-Trp also is biphasic. Analysis of first and second derivatives of the RSSF spectral changes give evidence for the formation of spectral bands with lambda max of approximately 423 nm, approximately 450 nm, and approximately 478 nm. The positions and shapes of these bands suggest a D-Trp external aldimine structure (423 nm) and a quinonoidal species (450 and 478 nm). However, product studies do not support this latter assignment. The behavior of the D- and L-Trp reactions and the reaction of beta-mercaptoethanol with the alpha-aminoacrylate strongly indicate the pre-existence of 2 slowly equilibrating forms of the internal aldimine and of the alpha-aminoacrylate.  相似文献   

11.
Tryptophanase from E.coli was oriented in a compressed slab of polyacrylamide gel and its linear dichroism (LD) and absorption spectra were measured. The free enzyme displays four LD bands at 305, 340, 425 and 490 nm. Two bands at 340 and 425 nm belong to the internal coenzyme-lysine aldimine. The 305 nm band apparently belongs to an aromatic amino acid residue; the sign and form of this band are changed upon the enzyme reaction with substrate analogs. The 490 nm band is present in the LD spectra of holo- and apoenzyme and disappears after treatment with NaBH4. It is suggested that the 490 nm band belongs to a quinoid enzyme subform. The reaction of tryptophanase with threo-beta-phenyl-DL-serine and L-threonine leads to formation of the external aldimine with a strong absorption band at 420-425 nm. The reduced LD (delta A/A) in this band is one order of magnitude greater than that in the 420 nm of the free enzyme. The complex with D-alanine is characterized by an intermediate LD value in the 425 nm band. In the presence of indole this complex displays the same LD as that observed with beta-phenylserine. The reaction of tryptophanase with L-alanine and oxindolyl-L-alanine leads to formation of the quinoid intermediate with a 500 nm absorption band. The LD value in this band differs from those in the absorption bands of the free enzyme. It is concluded that reorientations of the coenzyme occur in the course of the tryptophanase reaction.  相似文献   

12.
RS Phillips  U Kalu  S Hay 《Biochemistry》2012,51(33):6527-6533
The effects of pH and hydrostatic pressure on the reaction of H463F tryptophan indole-lyase (TIL) have been evaluated. The mutant TIL shows very low activity for elimination of indole but is still competent to form a quinonoid intermediate from l-tryptophan [Phillips, R. S., Johnson, N., and Kamath, A. V. (2002) Biochemistry 41, 4012-4019]. Stopped-flow measurements show that the formation of the quinonoid intermediate at 505 nm is affected by pH, with a bell-shaped dependence for the forward rate constant, k(f), and dependence on a single basic group for the reverse rate constant, k(r), with the following values: pK(a1) = 8.14 ± 0.15, pK(a2) = 7.54 ± 0.15, k(f,min) = 18.1 ± 1.3 s(-1), k(f,max) = 179 ± 46.3 s(-1), k(r,min) = 11.4 ± 1.2 s(-1), and k(r,max) = 33 ± 1.6 s(-1). The pH effects may be due to ionization of Tyr74 as the base and Cys298 as the acid influencing the rate constant for deprotonation. High-pressure stopped-flow measurements were performed at pH 8, which is the optimum for the forward reaction. The rate constants show an increase with pressure up to 100 MPa and a subsequent decrease above 100 MPa. Fitting the pressure data gives the following values: k(f,0) = 15.4 ± 0.8 s(-1), ΔV(?) = -29.4 ± 2.9 cm(3) mol(-1), and Δβ(?) = -0.23 ± 0.03 cm(3) mol(-1) MPa(-1) for the forward reaction, and k(r,0) = 20.7 ± 0.8 s(-1), ΔV(?) = -9.6 ± 2.3 cm(3) mol(-1), and Δβ(?) = -0.05 ± 0.02 cm(3) mol(-1) MPa(-1) for the reverse reaction. The primary kinetic isotope effect on quinonoid intermediate formation at pH 8 is small (~2) and is not significantly pressure-dependent, suggesting that the effect of pressure on k(f) may be due to perturbation of an active site preorganization step. The negative activation volume is also consistent with preorganization of the ES complex prior to quinonoid intermediate formation, and the negative compressibility may be due to the effect of pressure on the enzyme conformation. These results support the conclusion that the preorganization of the H463F TIL Trp complex, which is probably dominated by motion of the l-Trp indole moiety of the aldimine complex, contributes to quinonoid intermediate formation.  相似文献   

13.
K Shostak  V Schirch 《Biochemistry》1988,27(21):8007-8014
The reaction specificity and stereochemical control of Escherichia coli serine hydroxymethyltransferase were investigated with D- and L-alanine as substrates. An active-site H228N mutant enzyme binds both D- and L-alanine with Kd values of 5 mM as compared to 30 and 10 mM, respectively, for the wild-type enzyme. Both wild-type and H228N enzymes form quinonoid complexes absorbing at 505 nm by catalyzing the loss of the alpha-proton from both D- and L-alanine. Racemization and transamination reactions were observed to occur with both alanine isomers as substrates. The relative rates of these reactions are quinonoid formation greater than alpha-proton solvent exchange greater than racemization greater than transamination. The observation that the rate of quinonoid formation with either alanine isomer is an order of magnitude faster than solvent exchange suggests that the alpha-protons from both D- and L-alanine are transferred to base(s) on the enzyme. The rate of racemization is 2 orders of magnitude slower than the formation of the quinonoid complexes. This latter difference in rate suggests that the quinonoid complexes formed from D- and L-alanine are not identical. The difference in structure of the two quinonoid complexes is proposed to be the active-site location of the alpha-protons lost from the two alanine isomers, rather than two orientations of the pyridoxal phosphate ring. The results are consistent with a two-base mechanism for racemization.  相似文献   

14.
Tryptophanase from Escherichia coli was studied with respect to its interactions with L-alanine, beta-chloro-L-alanine, L-phenylalanine, L-methionine, L-threonine, beta-phenyl-DL-serine (threo form) and also with a new tryptophan analog oxindolyl-L-alanine. Slow transamination of L-alanine in the active site of the enzyme was observed. Some evidence is presented which indicates that the side transamination reaction occurs during incubation of tryptophanase with an adequate substrate, beta-chloro-L-alanine. Absorption and circular dichroism (CD) spectra of the enzyme-quasisubstrate complexes have been recorded. Addition of beta-phenylserine and threonine to the enzyme induces a decrease of absorbance at 337 nm and an increase of absorbance at 420 nm. The spectral changes are associated with inversion of the CD sign, i.e. with disappearance of positive CD in the 420 nm band and appearance of negative CD in this band. It is inferred that beta-phenylserine and threonine form an external coenzyme-substrate aldimine which undergoes slow conversion to give a keto acid and the free enzyme. Addition of oxindolylalanine to tryptophanase results in the formation of an intense narrow absorption band at 504 nm with a shoulder at about 475 nm. This band belongs to a quinonoid intermediate. A positive CD is seen in the 504 nm band; the dissymmetry factor (delta A/A) in this band is much smaller than that in the absorption bands of the free enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Lysine 269 in Escherichia coli tryptophan indole-lyase (tryptophanase) has been changed to arginine by site-directed mutagenesis. The resultant K269R mutant enzyme exhibits kcat values about 10% those of the wild-type enzyme with S-(o-nitrophenyl)-L-cysteine, L-tryptophan, and S-benzyl-L-cysteine, while kcat/Km values are reduced to 2% or less. The pH profile of kcat/Km for S-benzyl-L-cysteine for the mutant enzyme exhibits two pK alpha values which are too close to separate, with an average value of 7.6, while the wild-type enzyme exhibits pK alpha values of 6.0 and 7.8. The pK alpha for the interconversion of the 335 and 412 nm forms of the K269R enzyme is 8.3, while the wild-type enzyme exhibits a pK alpha of 7.4. Steady-state kinetic isotope effects on the reaction of [alpha-2H]S-benzyl-L-cysteine with the K269R mutant enzyme (Dkcat = 2.0; D(kcat/Km) = 3.9) are larger than those of the wild-type enzyme (Dkcat = 1.4; D(kcat/Km) = 2.9). Rapid scanning stopped-flow kinetic studies demonstrate that the K269R mutant enzyme does not accumulate quinonoid intermediates with L-alanine, L-tryptophan, or S-methyl-L-cysteine, but does form quinonoid absorption peaks in complexes with S-benzyl-L-cysteine and oxidolyl-L-alanine, whereas wild-type enzyme forms prominent quinonoid bands with all these amino acids. Single wavelength stopped-flow kinetic studies demonstrate that the alpha-deprotonation of S-benzyl-L-cysteine is 6-fold slower in the K269R mutant enzyme, while the intrinsic deuterium kinetic isotope effect is less for the K269R enzyme (Dk = 4.2) than for the wild-type (Dk = 7.9). The decay of the K269R quinonoid intermediate in the presence of benzimidazole is 7.1-fold slower than that of the wild-type enzyme. These results demonstrate that Lys-269 plays a significant role in the conformational changes or electrostatic effects obligatory to the formation and decomposition of the quinonoid intermediate, although it is not an essential basic residue.  相似文献   

16.
Addition of difluoro-oxaloacetate to the aminic form of aspartate transaminase causes a rapid shift of absorbance maximum of the enzyme from 332 nm to 328 nm, followed by a much slower shift to 360 nm corresponding to complete conversion of the aminic form of the enzyme into the aldimine form or a species with similar spectral parameters in rapid equilibrium with it. Kinetic analysis of both the initial fast reaction and the overall slow reaction by using repeated spectral scanning and stopped-flow techniques allows formulation of a basic reaction mechanism involving at least two intermediate enzyme complexes. Computer simulation of the progress curves of the initial fast reaction based on the suggested reaction mechanism gives kinetic parameters that are consistent with all the data obtained by other methods. A molecular reaction scheme involving a ketimine Schiff-base intermediate is proposed.  相似文献   

17.
Asn185 is an invariant residue in all known sequences of TPL and of closely related tryptophanase and it may be aligned with the Asn194 in aspartate aminotransferase. According to X-ray data, in the holoenzyme and in the Michaelis complex Asn185 does not interact with the cofactor pyridoxal 5'-phosphate, but in the external aldimine a conformational change occurs which is accompanied by formation of a hydrogen bond between Asn185 and the oxygen atom in position 3 of the cofactor. The substitution of Asn185 in TPL by alanine results in a mutant N185A TPL of moderate residual activity (2%) with respect to adequate substrates, L-tyrosine and 3-fluoro-L-tyrosine. The affinities of the mutant enzyme for various amino acid substrates and inhibitors, studied by both steady-state and rapid kinetic techniques, were lower than for the wild-type TPL. This effect mainly results from destabilization of the quinonoid intermediate, and it is therefore concluded that the hydrogen bond between Asn185 and the oxygen at the C-3 position of the cofactor is maintained in the quinonoid intermediate. The relative destabilization of the quinonoid intermediate and external aldimine leads to the formation of large amounts of gem-diamine in reactions of N185A TPL with 3-fluoro-L-tyrosine and L-phenylalanine. For the reaction with 3-fluoro-L-tyrosine it was first possible to determine kinetic parameters of gem-diamine formation by the stopped-flow method. For the reactions of N185A TPL with substrates bearing good leaving groups the observed values of k(cat) could be accounted for by taking into consideration two effects: the decrease in the quinonoid content under steady-state conditions and the increase in the quinonoid reactivity in a beta-elimination reaction. Both effects are due to destabilization of the quinonoid and they counterbalance each other. Multiple kinetic isotope effect studies on the reactions of N185A TPL with suitable substrates, L-tyrosine and 3-fluoro-L-tyrosine, show that the principal mechanism of catalysis, suggested previously for the wild-type enzyme, does not change. In the framework of this mechanism the observed considerable decrease in k(cat) values for reactions of N185A TPL with L-tyrosine and 3-fluoro-L-tyrosine may be ascribed to participation of Asn185 in additional stabilization of the keto quinonoid intermediate.  相似文献   

18.
Zhou X  Jin X  Medhekar R  Chen X  Dieckmann T  Toney MD 《Biochemistry》2001,40(5):1367-1377
The two half-reactions of the pyridoxal 5'-phosphate (PLP)-dependent enzyme dialkylglycine decarboxylase (DGD) were studied individually by multiwavelength stopped-flow spectroscopy. Biphasic behavior was found for the reactions of DGD-PLP, consistent with two coexisting conformations observed in steady-state kinetics [Zhou, X., and Toney, M. D. (1998) Biochemistry 37, 5761--5769]. The half-reaction kinetic parameters depend on alkali metal ion size in a manner similar to that observed for steady-state kinetic parameters. The fast phase maximal rate constant for the 2-aminoisobutyrate (AIB) decarboxylation half-reaction with the potassium form of DGD-PLP is 25 s(-1), while that for the transamination half-reaction between DGD-PMP and pyruvate is 75 s(-1). The maximal rate constant for the transamination half-reaction of the potassium form of DGD-PLP with L-alanine is 24 s(-1). The spectral data indicate that external aldimine formation with either AIB or L-alanine and DGD-PLP is a rapid equilibrium process, as is ketimine formation from DGD-PMP and pyruvate. Absorption ascribable to the quinonoid intermediate is not observed in the AIB decarboxylation half-reaction, but is observed in the dead-time of the stopped-flow in the L-alanine transamination half-reaction. The [1-(13)C]AIB kinetic isotope effect (KIE) on k(cat) for the steady-state reaction is 1.043 +/- 0.003, while a value of 1.042 +/- 0.009 was measured for the AIB half-reaction. The secondary KIE measured for the AIB decarboxylation half-reaction with [C4'-(2)H]PLP is 0.92 +/- 0.02. The primary [2-(2)H]-L-alanine KIE on the transamination half-reaction is unity. Small but significant solvent KIEs are observed on k(cat) and k(cat)/K(M) for both substrates, and the proton inventories are linear in each case. NMR measurements of C2--H washout vs product formation give ratios of 105 and 14 with L-alanine and isopropylamine as substrates, respectively. These results support a rate-limiting, concerted C alpha-decarboxylation/C4'-protonation mechanism for the AIB decarboxylation reaction, and rapid equilibrium quinonoid formation followed by rate-limiting protonation to the ketimine intermediate for the L-alanine transamination half-reaction. Energy profiles for the two half-reactions are constructed.  相似文献   

19.
5-Aminolevulinate (ALA), an essential metabolite in all heme-synthesizing organisms, results from the pyridoxal 5′-phosphate (PLP)-dependent enzymatic condensation of glycine with succinyl-CoA in non-plant eukaryotes and α-proteobacteria. The predicted chemical mechanism of this ALA synthase (ALAS)-catalyzed reaction includes a short-lived glycine quinonoid intermediate and an unstable 2-amino-3-ketoadipate intermediate. Using liquid chromatography coupled with tandem mass spectrometry to analyze the products from the reaction of murine erythroid ALAS (mALAS2) with O-methylglycine and succinyl-CoA, we directly identified the chemical nature of the inherently unstable 2-amino-3-ketoadipate intermediate, which predicates the glycine quinonoid species as its precursor. With stopped-flow absorption spectroscopy, we detected and confirmed the formation of the quinonoid intermediate upon reacting glycine with ALAS. Significantly, in the absence of the succinyl-CoA substrate, the external aldimine predominates over the glycine quinonoid intermediate. When instead of glycine, l-serine was reacted with ALAS, a lag phase was observed in the progress curve for the l-serine external aldimine formation, indicating a hysteretic behavior in ALAS. Hysteresis was not detected in the T148A-catalyzed l-serine external aldimine formation. These results with T148A, a mALAS2 variant, which, in contrast to wild-type mALAS2, is active with l-serine, suggest that active site Thr-148 modulates ALAS strict amino acid substrate specificity. The rate of ALA release is also controlled by a hysteretic kinetic mechanism (observed as a lag in the ALA external aldimine formation progress curve), consistent with conformational changes governing the dissociation of ALA from ALAS.  相似文献   

20.
Amino acid transformations catalyzed by a number of pyridoxal 5'-phosphate (PLP)-dependent enzymes involve abstraction of the Calpha proton from an external aldimine formed between a substrate and the cofactor leading to the formation of a quinonoid intermediate. Despite the key role played by the quinonoid intermediates in the catalysis by PLP-dependent enzymes, limited accurate information is available about their structures. We trapped the quinonoid intermediates of Citrobacter freundii tyrosine phenol-lyase with L-alanine and L-methionine in the crystalline state and determined their structures at 1.9- and 1.95-A resolution, respectively, by cryo-crystallography. The data reveal a network of protein-PLP-substrate interactions that stabilize the planar geometry of the quinonoid intermediate. In both structures the protein subunits are found in two conformations, open and closed, uncovering the mechanism by which binding of the substrate and restructuring of the active site during its closure protect the quinonoid intermediate from the solvent and bring catalytically important residues into positions suitable for the abstraction of phenol during the beta-elimination of L-tyrosine. In addition, the structural data indicate a mechanism for alanine racemization involving two bases, Lys-257 and a water molecule. These two bases are connected by a hydrogen bonding system allowing internal transfer of the Calpha proton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号