首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enzyme catalyzing thiol-disulfide exchange, thioltransferase, was purified to homogeneity from pig liver. By taking advantage of the relatively large pI shift of the enzyme between its reduced and disulfide forms, the purification procedure, which included a heat step, ammonium sulfate precipitation, Sephadex G-75 and G-50 gel chromatography, and two CM-Sepharose chromatography separations, resulted in a 32% overall yield. The purified enzyme was demonstrated to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, isoelectric focusing, and high-performance liquid chromatography. The protein had a Mr of approximately 11,000 and, in the reduced form, a pI of 6.4. The amino acid composition of the enzyme was similar to that of rat liver thioltransferase and calf thymus glutaredoxin and the N-terminus of the protein was blocked. The optimal pH for the enzyme activity was 9.0. The plots of thioltransferase activity as a function of S-sulfocysteine, 2-hydroxyethyl disulfide, and reduced glutathione concentrations did not display Michaelis-Menten kinetics. The enzyme was very sensitive to a sulfhydryl alkylating reagent. Preincubation of the enzyme with its disulfide substrates prevented the inactivation of the enzyme by iodoacetic acid while the other substrate, GSH, did not provide such protection. The results suggest that the active center of thioltransferase is cysteine dependent.  相似文献   

2.
Purification and properties of thioltransferase   总被引:3,自引:0,他引:3  
A protein, previously designated thioltransferase (Askelof, P., Axelsson, K., Eriksson, S., and Mannervik, B. (1974) FEBS Lett. 38, 263-267) was purified to homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and flatbed gel isoelectric focusing. The preparative procedure, a modification of that of Axelsson et al. (Axelsson, K., Eriksson, S., and Mannervik, B. (1978) Biochemistry 17, 2978-2984) and Hatakeyama et al. (Hatakeyama, M., Tanimoto, Y., and Mizoguchi, T. (1984) J. Biochem. (Tokyo) 95, 1811-1818) was faster and higher-yielding than the previous procedures. The purified enzyme has a molecular weight of 11,700 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a pI of 8.8. The amino acid composition of thioltransferase is reported, and it closely resembles that of calf thymus glutaredoxin. The optimal pH for this enzyme was 8.5 when S-sulfocysteine was used as a substrate. The plots of the activity of thioltransferase as a function of S-sulfocysteine and 2-hydroxyethyl disulfide concentrations showed sigmoidal relationships. The K0.5 for S-sulfocysteine was 0.6 mM. The enzyme was very sensitive to sulfhydryl alkylating reagents. Preincubation of the enzyme with disulfide compounds prevented the enzyme from inactivation by iodoacetamide but inhibited the thioltransferase activity in the absence of iodoacetamide. The results suggest that the active center of thioltransferase is cysteine dependent and that substrates may form mixed disulfides with the enzyme. Based on the iodoacetamide inactivation and disulfide protection of thioltransferase activity, a model for the catalytic mechanism of the thiol-disulfide oxidoreduction is proposed.  相似文献   

3.
Among alpha 3-fucosyltransferases (alpha3-FucTs) from most species, four cysteine residues appear to be highly conserved. Two of these cysteines are located at the N-terminus and two at the C-terminus of the catalytic domain. FucT VII possesses two additional cysteines in close proximity to each other located in the middle of the catalytic domain. We identified the disulfide bridges in a recombinant, soluble form of human FucT VII. Potential free cysteines were modified with a biotinylated alkylating reagent, disulfide bonds were reduced and alkylated with iodoacetamide, and the protein was digested with either trypsin or chymotrypsin, before characterization by high-performance liquid chromatography/electrospray ionization mass spectrometry. More than 98% of the amino acid sequence for the truncated enzyme (beginning at amino acid 53) was verified. Mass spectrometry analysis also demonstrated that both potential N-linked sites are occupied. All six cysteines in the FucT VII sequence were shown to be disulfide-linked. The pairing of the cysteines was determined by proteolytic cleavage of nonreduced protein and subsequent analysis by mass spectrometry. The results demonstrated that Cys(68)-Cys(76), Cys(211)-Cys(214), and Cys(318)-Cys(321) are disulfide-linked. We have used this information, together with a method of fold recognition and homology modeling, using the (alpha/beta)(8)-barrel fold of Escherichia coli dihydrodipicolinate synthase as a template to propose a model for FucT VII.  相似文献   

4.
By using site-directed mutagenesis techniques, the essential amino acids at the catalytic center of porcine thioltransferase (glutaredoxin) were determined. Seven oligonucleotides were designed, synthesized, and used to construct mutants, ETT-C22S, ETT-C25S, ETT-C25A, ETT-R26V, ETT-K27Q, ETT-R26V: K27Q, and ETT-C78S:C82S, by altering their codons in pig liver thioltransferase cDNA/M13mp18 clones. Each of the thioltransferases was purified to homogeneity and its dithiol-disulfide exchange, and dehydroascorbate reductase activities were compared with those of the wild-type (ETT). Evidence was obtained that Cys22 was essential for catalytic activity, and the extremely low pKa value of its sulfhydryl group was facilitated primarily by Arg26. The role of Lys27 at the active center was different from that of Arg26 and may be important in stabilizing the E.S intermediate by electrostatic forces. The second pair of cysteines, Cys78 and Cys82, nearer the C terminus, were not directly involved in the active center, but may play a role in defining the native protein structure. The replacement of the original Cys with a Ser at position 25 increased rather than decreased the enzyme activity, suggesting that the proposed intramolecular disulfide bond between Cys22 and Cys25 is not necessary for the catalytic mechanism of the Ser25 mutant, but does not rule out such a mechanism for the wild-type enzyme.  相似文献   

5.
The active site cysteine of pig liver thioltransferase was identified as Cys22. The kinetics of the reaction between Cys22 of the reduced enzyme and iodoacetic acid as a function of pH revealed that the active site sulfhydryl group had a pKa of 2.5. Incubation of reduced enzyme with [1-14C]cysteine prevented the inactivation of the enzyme by iodoacetic acid at pH 6.5, and no stable protein-cysteine disulfide was found when the enzyme was separated from excess [1-14C]cysteine, suggesting an intramolecular disulfide formation. The results suggested a reaction mechanism for thioltransferase. The thiolated Cys22 first initiates a nucleophilic attack on a disulfide substrate, resulting in the formation of an unstable mixed disulfide between Cys22 and the substrate. Subsequently, the sulfhydryl group at Cys25 is deprotonated as a result of micro-environmental changes within the active site domain, releasing the mixed disulfide and forming an intramolecular disulfide bond. Reduced glutathione, the second substrate, reduces the intramolecular disulfide forming a transient mixed disulfide which is then further reduced by glutathione to regenerate the reduced enzyme and form oxidized glutathione. The rate-limiting step for a typical reaction between a disulfide and reduced glutathione is proposed to be the reduction of the intramolecular disulfide form of the enzyme by reduced glutathione.  相似文献   

6.
F Li  S Liang 《Peptides》1999,20(9):1027-1034
The positions of the disulfide bonds of Selenocosmia huwena lectin-I (SHL-I) from the venom of the Chinese bird spider S. huwena have been determined. The existence of three disulfide bonds in the native SHL-I was proved by matrix-assisted laser desorption ionization time-of-flight mass spectroscopic analysis. To map the disulfide bonds, native SHL-I was proteolytically digested. The resulting peptides were separated by reverse phase high-performance liquid chromatography. Matrix-assisted laser desorption ionization time-of-flight mass spectroscopic analysis indicated the presence of one disulfide bond Cys7-Cys19. The partially reduced peptides by using Tris-(2-carboxyethyl)-phosphine at pH 3.0 were purified by reverse phase high-performance liquid chromatography. Four M Guanidine-HCl was found to increase the yields of partially reduced peptides prominently. The free thiols were carboxamidomethlate by iodoacetamide. The specific location of another disulfide bond Cys2-Cys14 was proved by comparing N-terminal sequencing analysis of the partially reduced and alkylated SHL-I with that of the intact peptide. Finally, the three disulfide linkage of SHL-I could be assigned as Cys2-Cys14, Cys7-Cys19, Cys13-Cys26.  相似文献   

7.
The primary structure of pig liver thioltransferase   总被引:3,自引:0,他引:3  
The complete amino acid sequence of pig liver thioltransferase has been determined. The homogeneous protein was cleaved by trypsin, chymotrypsin, Staphylococcus aureus V8 protease, and cyanogen bromide. The resulting peptides were purified by reversed-phase high performance liquid chromatography and ion-exchange fast protein liquid chromatography. Sequencing of the fragments was achieved with either automated Edman degradation or fast atom bombardment-mass spectrometry. Pig liver thioltransferase is a single polypeptide with 105 amino acid residues and an acetylated glutamine N terminus. The protein has 2 cysteine pairs with sequences of -Cys-Pro-Phe-Cys- and -Cys-Ile-Gly-Gly-Cys-, the first pair of which (Cys22 and Cys25) is located at the potential active site of the enzyme. The sequence of pig liver thioltransferase displays close homology (82%) with calf thymus glutaredoxin, suggesting that they belong to the same evolutionary family.  相似文献   

8.
S-methylated cysteines in human lens gamma S-crystallins   总被引:1,自引:0,他引:1  
Lapko VN  Smith DL  Smith JB 《Biochemistry》2002,41(50):14645-14651
The proteins of the eye lens, which do not turn over throughout life, undergo many modifications, some of which lead to senile cataract. We describe a modification, S-methylation of cysteine, that may serve to protect the lens from detrimental modifications. The modification was detected as a +14 Da peak in electrospray ionization mass spectra of human lens gammaS-crystallins. Derivatization of gammaS-crystallin with iodoacetamide showed reaction at only six of the seven cysteines, indicating the modification blocked reaction at one cysteine. Further analysis of the modified gammaS-crystallin as tryptic peptides located the modification primarily at Cys 26, with smaller amounts at Cys 24. Tandem mass spectrometry and exact mass measurements showed that the modification was S-methylation. Methylation of proteins has been documented at several other amino acid residues, but S-methylation of cysteine residues has previously been detected only as part of a methyltransferase DNA repair mechanism or at trace amounts in hemoglobin. The high levels of S-methylated cysteines in lens nuclei and the specificity for Cys 26 and Cys 24 suggest the reaction is enzymatically mediated. This modification is particularly important because it blocks disulfide bonding of gammaS-crystallins and, thereby, inhibits formation of the high-molecular weight assemblies associated with cataract. Evidence of more S-methylation in soluble than in insoluble gammaS-crystallins supports the contention that S-methylation of gammaS-crystallin inhibits protein insolubilization and may offer protection against cataract.  相似文献   

9.
Immunological characterization of thioltransferase from pig liver   总被引:3,自引:0,他引:3  
Polyclonal antibodies against pig liver thioltransferase were raised in a New Zealand rabbit. These antibodies completely neutralized the thioltransferase activity of the homogeneous enzyme and that in the crude cytosolic homogenate at an equivalent titer. The antibodies also cross-reacted equally with calf thymus glutaredoxin and calf liver thioltransferase, but not with Escherichia coli thioredoxin, suggesting that thioltransferase and glutaredoxin from the same species are identical. Immunoblotting analysis of the cytosolic proteins from 14 different pig tissues revealed that most pig tissues contain a 12-kDa protein which reacts with these antibodies. This protein is found in greater abundance in stomach, small intestine, liver, skeletal muscle, kidney, heart, lung, and cerebral cortex, whereas retina, cerebellum, spleen, pancreas, and thymus have low levels of the protein. No reactive protein was detected in the lens. The tissue distribution of the protein was also determined by assay of the enzyme activity and was generally in good agreement with that obtained from the immunoblotting survey. Pig liver thioltransferase was cleaved by trypsin, chymotrypsin, Staphylococcus aureus V8 protease, and cyanogen bromide. The selected peptides purified by reversed phase high performance liquid chromatography or ion exchange fast protein liquid chromatography were subjected to reaction with the polyclonal antibodies against pig liver thioltransferase. Four antigenically reactive fragments were detected by dot-blotting analysis. These peptides are located in the first 30-amino acid residues from the NH2 terminus and the sequence from amino acid residues 39-67, indicating that the active site of the enzyme, Cys22 and Cys25, is located on one of the antigenic determinant domains.  相似文献   

10.
Plant protein tyrosine phosphatases (PTPs) are important in regulating cellular responses to redox change through their reversible inactivation under oxidative conditions. Studies on the soybean (Glycine max) GmPTP have shown that, compared with its mammalian counterparts, the plant enzyme is relatively insensitive to inactivation by H2O2 but hypersensitive (k(inact) = 559 M(-1) s(-1)) to S-glutathionylation (thiolation) promoted by the presence of oxidized glutathione (GSSG). Through a combination of chemical and mutational modification studies, three of the seven cysteine residues of GmPTP have been identified by mass spectrometry as being able to inactivate the enzyme when thiolated by GSSG or alkylated with iodoacetamide. Conserved Cys 266 was shown to be essential for catalysis but surprisingly resistant to S-modification, whereas the regulatory Cys 78 and Cys 176 were readily thiolated and/or alkylated. Mutagenesis of these cysteines showed that all three residues were in proximity of each other, regulating each's reactivity to S-modifying agents. Through a combination of protein modification and kinetic experiments, we conclude that the inactivation of GmPTP by GSSG is regulated at two levels. Cys 176 appears to be required to promote the formation of the reduced form of Cys 266, which is otherwise unreactive. When thiolated, Cys 176 immediately inactivates the enzyme, and this is followed by the thiolation of Cys 78, which undergoes a slow disulfide exchange with Cys 266 giving rise to a Cys 78-Cys 266 disulfide. We speculate that this two-tiered protection is required for regulation of GmPTP under highly oxidizing conditions.  相似文献   

11.
A single SH group in the B chain (33 kDa), generated by the specific reduction of the single interchain SS bond of human urinary urokinase, was alkylated (UK X B) with iodoacetamide to prevent a spontaneous SH-SS interchange. An SS bond in UK X B was exclusively alkylated with iodoacetamide (R X CAM-UK X B) after reduction with dithiothreitol in 0.3 M guanidine X HCl in the presence of the competitive inhibitor N alpha-benzoyl-L- argininamide with concomitant loss of 65-68% of the esterolytic activity towards N-acetyl-glycyl-L-lysine methyl ester. This specific SS bond was located at Cys194 - Cys222 whose SS loop contained the active-site Ser198 , as determined by amino acid analyses and identification of the N and C termini of the tryptic digest. Transformation of UK X B into R X CAM-UK X B induced no shift of the optimal pH in the bell-shaped pH/activity profile; pH values for 50% activity were similar (pH 9.7) for 10-min alkalization of the enzyme but different between UK X B (pH 9.4) and R X CAM-UK X B (pH 8.8) for 18-h alkalization. An unaltered Km value and a decline by 64% in kcat in the esterolytic activity indicate that the pretransition Michaelis complex is formed without degeneration of the primary substrate-binding site, but the catalytic pathway thereafter has deteriorated. In affinity labeling with dansyl chloride or N alpha-tosyl-L-lysine chloromethylketone, which interrupted the catalysis at the latest at a stage involving the abortive acyl intermediate, the second-order rate constant for UK X B was lowered to 28% or 35% for R X CAM-UK X B, respectively, but the labeling yields were similar. The results indicate that indispensable structural elements, such as the catalytic triad and oxyanion hole, are maintained but a local conformation, which is necessary for efficient transition to the acyl intermediate and/or for resistance against alkaline inactivation, is destabilized with Cys194 - Cys222 scission.  相似文献   

12.
During reaction with [14C]iodoacetamide at pH 6.3, radioactivity was incorporated primarily into a single Klebsiella aerogenes urease peptide concomitant with activity loss. This peptide was protected from modification at pH 6.3 by inclusion of phosphate, a competitive inhibitor of urease, which also protected the enzyme from inactivation. At pH 8.5, several peptides were alkylated; however, modification of one peptide, identical to that modified at pH 6.3, paralleled activity loss. The N-terminal amino acid sequence and composition of the peptide containing the essential thiol was determined. Previous enzyme inactivation studies of K. aerogenes urease could not distinguish whether one or two essential thiols were present per active site (Todd, M. J., and Hausinger, R. P. (1991) J. Biol. Chem. 266, 10260-10267); we conclude that there is a single essential thiol present and identify this residue as Cys319 in the large subunit of the heteropolymeric enzyme.  相似文献   

13.
Manganese superoxide dismutase (Mn-SOD) has been purified with a high yield (320 mg) from human liver (2 kg) and crystallized. Low-angle laser light scattering of the enzyme has shown that native enzyme is a tetrametic form. Four of the eight cysteine residues in the tetramer reacted with 5,5'-dithiobis(2-nitrobenzoic acid) or with iodoacetamide. The others were only reactive in protein heated with SDS or urea after reduction with dithiothreitol or 2-mercaptoethanol. The reactive sulfhydryl group was found to be located at Cys196 by amino acid sequence analysis of Nbs2-reactive peptides isolated by activated thiol-Sepharose covalent chromatography. Incubation of Mn-SOD in 1% SDS for 2 or 3 days at 25 degrees C or 5 min at 100 degrees C gave material showing two prominent components on polyacrylamide gel electrophoresis in the presence of 0.1% SDS. The major component had a molecular mass of 23 kDa; the other, 25 kDa. Reduction of the protein by dithiothreitol or 2-mercaptoethanol heated in SDS produced only the 25-kDa monomer species. Essentially, no thiol groups were detected in the 23-kDa form, in which two cysteine residues appear to have been oxidized to form an intrasubunit disulfide. This indicates that Cys196 has a reactive sulfhydryl and appears to be a likely candidate for a mixed disulfide formation in vivo.  相似文献   

14.
A basic serine protease which is active on casein and fibrinogen was purified from Bothrops moojeni venom using a single step chromatography on a CM-Sepharose fast flow column. The enzyme, MOO3, was not hemorrhagic and presented only a trace of blood-clotting activity. Synthetic chromogenic substrates (azoacasein and azoalbumin) where not hydrolyzed by MOO3. Using polyacrylamide gel electrophoresis at pH 4.3, MOO3 showed as a single protein band. Using sodium dodecyl sulfate-polyacrylamide electrophoresis, MOO3 behaved as a single-chain protein with an approximate mol. weight of 27,000, both in the presence and absence of beta-mercaptoethanol. Its pI was 7.8 by electrofocusing. The enzyme did not contain neutral carbohydrates and its N-terminal amino acid was alanine. The amino acid composition showed 249 residues/mole, a high content of hydrophilic amino acids and 14 half-cystine residues, which should account for 7 disulfide bonds. The protease cleaved the A-alpha chain faster than the B-beta of bovine fibrinogen and showed no effect on the delta-chain. Specific esterolytic activity of MOO3 on alpha-N-tosyl-l-arginine methyl ester was 29.64 mumol min-1 x mg-1. MOO3 represented 1.42% (w/w) of the initial desiccated venom. Its proteolytic activity was inhibited by beta-mercaptoethanol, leupeptin, phenylmethylsulphonyl fluoride and ethylenediamine tetraacetate.  相似文献   

15.
The thermostable sweet protein brazzein consists of 54 amino acid residues and has four intramolecular disulfide bonds, the location of which is unknown. We found that brazzein resists enzymatic hydrolysis at enzyme/substrate ratios (w/w) of 1:100-1:10 at 35–40°C for 24–48 h. Brazzein was hydrolyzed using thermolysin at an enzyme/substrate ratio of 1:1 (w/w) in water, pH 5.5. for 6 h and at 50°C. The disulfide bonds were determined, by a combination of mass spectrometric analysis and amino acid sequencing of cystine-containing peptides, to be between Cys4-Cys52, Cys16-Cys37, Cys22-Cys47, and Cys26-Cys49. These disulfide bonds contribute to its thermostability. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The antifreeze polypeptide (AFP) from the sea raven, Hemitripterus americanus, is a member of the cystine-rich class of blood antifreeze proteins which enable survival of certain fishes at sub-zero temperatures. Sea raven AFP contains 129 residues with 10 half-cystine residues. We have analyzed these half-cystine residues and established that all 10 of the half-cystine residues appeared to be involved in disulfide bond formation and that disulfide bonds linked Cys7 to Cys18, Cys35 to Cys125, and Cys89 to Cys117. These assignments were established by extensive proteolytic digestions of native AFP using pepsin and thermolysin and purification of the peptides by Sephadex G-15 gel filtration chromatography, anion exchange chromatography, and C18 reverse-phase high performance liquid chromatography. Cystine-containing peptides were detected by a colorimetric assay using nitrothiosulfobenzoate. Disulfide-containing peptides were reduced and alkylated, purified, and analyzed by amino acid analysis. The unreduced disulfide-linked peptides were sequenced directly by automated Edman degradations to confirm the disulfide assignments. Possible arrangements of the two remaining disulfide bonds include linkages Cys69/111 to Cys100/101. The sea raven AFP shares structural similarity with pancreatic stone protein and several lectin-binding proteins, especially with respect to half-cystines, glycines, and bulky aromatic residues. Two of the disulfide linkages we determined for sea raven AFP: Cys7-Cys18 and Cys35-Cys125, are conserved in these proteins. These similarities in covalent structure suggest that the sea raven AFP, pancreatic stone protein, and several lectin-binding proteins comprise a family of proteins which may possess a common fold.  相似文献   

17.
Tchong SI  Xu H  White RH 《Biochemistry》2005,44(5):1659-1670
A [4Fe-4S] enzyme that decomposes L-cysteine to hydrogen sulfide, ammonia, and pyruvate has been isolated and characterized from Methanocaldococcus jannaschii. The sequence of the isolated enzyme demonstrated that the protein was the product of the M. jannaschii MJ1025 gene. The protein product of this gene was recombinantly produced in Escherichia coli and purified to homogeneity. Both the isolated and recombinant enzymes are devoid of pyridoxal phosphate (PLP) and are rapidly inactivated upon exposure to air. The air-inactivated enzyme is activated by reaction with Fe2+ and dithiothreitol in the absence of air. The air-inactivated enzyme contains 3 mol of iron per subunit (43 kDa, SDS gel electrophoresis), and the native enzyme has a measured molecular mass of 135 kDa (gel filtration), indicating it is a trimer. The enzyme is very specific for L-cysteine, with no activity being detected with D-cysteine, L-homocysteine, 3-mercaptopropionic acid (cysteine without the amino group), cysteamine (cysteine without the carboxylic acid), or mercaptolactate (the hydroxyl analogue of cysteine). The activity of the enzyme was stimulated by 40% when the enzyme was assayed in the presence of methyl viologen (4 mM) and inhibited by 70% when the enzyme was assayed in the presence of EDTA (7.1 mM). Preincubation of the enzyme with iodoacetamide (17 mM) completely abolishes activity. The enzymatic activity has a half-life of 8 or 12 min when the enzyme is treated at room temperature with 0.42 mM N-ethylmaleimide (NEM) or 0.42 mM iodoacetamide, respectively. MALDI analysis of the NEM-inactivated enzyme showed Cys25 as the site of alkylation. Site-directed mutagenesis of each of four of the cysteines conserved in the orthologues of the enzyme reduced the catalytic efficiency and thermal stability of the enzyme. The enzyme was found to catalyze exchange of the C-2 hydrogen of the L-cysteine with solvent. These results are consistent with three of the conserved cysteines being involved in the formation of the [4Fe-4S] center and the thiolate of Cys25 serving as a base to abstract the alpha-hydrogen in the first step of the elimination. Although the enzyme has no sequence homology to any known enzymes, including the non-PLP-dependent serine/threonine dehydratases or aconitases, the mechanisms of action of all of these enzymes are similar, in that each catalyzes an alpha,beta-elimination reaction adjacent to a carboxylate group. It is proposed that the enzyme may be responsible for the production of sulfide required for the biosynthesis of iron-sulfur centers in this archaea. A mechanism of action of the enzyme is proposed.  相似文献   

18.
A cDNA clone encoding the human cysteine protease cathepsin L was expressed at high levels in Escherichia coli in a T7 expression system. The insoluble recombinant enzyme was solubilized in urea and refolded at alkaline pH. 38-kDa procathepsin L was purified by gel filtration at pH 8.0, and a 29-kDa form of the enzyme was purified by gel filtration after autoprocessing of the proenzyme at pH 6.5. The kinetic properties of the 29-kDa species of recombinant cathepsin L were similar to those published for the human liver enzyme (Mason, R. W., Green, G. D. J., and Barrett, A.J. (1985) Biochem. J. 226, 233-241), using benzyloxycarbonyl-Phe-Arg-7-(4-methyl)coumarylamide as substrate. However, the stability of the recombinant enzyme, and its pH optimum for this substrate was shifted to a higher pH. Structure-function studies of cathepsin L were performed by constructing mutations in either the propeptide portion or the carboxyl-terminal light chain portion of the protein. These constructions were expressed in the E. coli system, and enzymatic activities were assayed following solubilization, renaturation, and gel filtration chromatography of the mutated proteins. Deletions of increasing size in the propeptide resulted in large proportional losses of activity, indicating that the propeptide is essential for proper enzyme folding and/or processing in this renaturation system. Deletion of part of the light chain containing a disulfide-forming cysteine residue or a single amino acid substitution of alanine for this cysteine residue resulted in almost complete loss of activity. These data suggest that the disulfide bond joining the heavy and light chains of cathepsin L is essential for enzymatic activity.  相似文献   

19.
Part of the dimer and B/C domain interface of the Escherichia coli mannitol permease (EII(mtl)) has been identified by the generation of disulfide bridges in a single-cysteine EII(mtl), with only the activity linked Cys(384) in the B domain, and in a double-cysteine EII(mtl) with cysteines at positions 384 and 124 in the first cytoplasmic loop of the C domain. The disulfide bridges were formed in the enzyme in inside-out membrane vesicles and in the purified enzyme by oxidation with Cu(II)-(1,10-phenanthroline)(3), and they were visualized by SDS-polyacrylamide gel electrophoresis. Discrimination between possible disulfide bridges in the dimeric double-cysteine EII(mtl) was done by partial digestion of the protein and the formation of heterodimers, in which the cysteines were located either on different subunits or on one subunit. The disulfide bridges that were identified are an intersubunit Cys(384)-Cys(384), an intersubunit Cys(124)-Cys(124), an intersubunit Cys(384)-Cys(124), and an intrasubunit Cys(384)-Cys(124). The disulfide bridges between the B and C domain were observed with purified enzyme and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Mannitol did not influence the formation of the disulfide between Cys(384) and Cys(124). The close proximity of the two cysteines 124 was further confirmed with a separate C domain by oxidation with Cu(II)-(1,10-phenanthroline)(3) or by reactions with dimaleimides of different length. The data in combination with other work show that the first cytoplasmic loop around residue 124 is located at the dimer interface and involved in the interaction between the B and C domain.  相似文献   

20.
In the venom of eusocial bee Lasioglossum laticeps, we identified a novel unique antimicrobial peptide named lasiocepsin consisting of 27 amino acid residues and two disulfide bridges. After identifying its primary structure, we synthesized lasiocepsin by solid-phase peptide synthesis using two different approaches for oxidative folding. The oxidative folding of fully deprotected linear peptide resulted in a mixture of three products differing in the pattern of disulfide bridges. Regioselective disulfide bond formation significantly improved the yield of desired product. The synthetic lasiocepsin possessed antimicrobial activity against both Gram-positive and -negative bacteria, antifungal activity against Candida albicans, and no hemolytic activity against human erythrocytes. We synthesized two lasiocepsin analogs cyclized through one native disulfide bridge in different positions and having the remaining two cysteines substituted by alanines. The analog cyclized through a Cys8-Cys25 disulfide bridge showed reduced antimicrobial activity compared to the native peptide while the second one (Cys17-Cys27) was almost inactive. Linear lasiocepsin having all four cysteine residues substituted by alanines or alkylated was also inactive. That was in contrast to the linear lasiocepsin with all four cysteine residues non-paired, which exhibited remarkable antimicrobial activity. The shortening of lasiocepsin by several amino acid residues either from the N- or C-terminal resulted in significant loss of antimicrobial activity. Study of Bacillus subtilis cells treated by lasiocepsin using transmission electron microscopy showed leakage of bacterial content mainly from the holes localized at the ends of the bacterial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号