首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood vessels form either by the assembly and differentiation of mesodermal precursor cells (vasculogenesis) or by sprouting from preexisting vessels (angiogenesis). Endothelial-specific receptor tyrosine kinases and their ligands are known to be essential for these processes. Targeted disruption of vascular endothelial growth factor (VEGF) or its receptor kdr (flk1, VEGFR2) in mouse embryos results in a severe reduction of all blood vessels, while the complete loss of flt1 (VEGFR1) leads to an increased number of hemangioblasts and a disorganized vasculature. In a large-scale forward genetic screen, we identified two allelic zebrafish mutants in which the sprouting of blood vessels is specifically disrupted without affecting the assembly and differentiation of angioblasts. Molecular cloning revealed nonsense mutations in flk1. Analysis of mRNA expression in flk1 mutant embryos showed that flk1 expression was severely downregulated, while the expression of other genes (scl, gata1, and fli1) involved in vasculogenesis or hematopoiesis was unchanged. Overexpression of vegf(121+165) led to the formation of additional vessels only in sibling larvae, not in flk1 mutants. We demonstrate that flk1 is not required for proper vasculogenesis and hematopoiesis in zebrafish embryos. However, the disruption of flk1 impairs the formation or function of vessels generated by sprouting angiogenesis.  相似文献   

2.
The bronchus and vasculature form an intrinsic functional component of the avian lung, and its growth must be tightly regulated and coordinated by lung epithelial and endothelial development. Vascular endothelial growth inhibitor (VEGI), vascular endothelial growth factor (VEGF) and its receptors (flk1/KDR, flt1/fms, flt4) are required for epithelial and endothelial cell survival and apoptosis. Especially, VEGF and its receptors are critical for the development of the lung and serve as a maintenance factor during adult life. To determine the function of VEGI, VEGF and its receptors in the posthatching lung development, we revealed its expression and localization using by immunohistochemical procedure. VEGI, VEGF and its receptors were observed in the structural components of the bronchi, atria and air capillaries, as well as in the pulmonary blood vessels throughout the posthatching development period. On the other hand, immunostaining for VEGI, VEGF and its receptors was faintly detected in the glands of the secondary bronchi. Furthermore, it was determined that the secondary bronchial and atrial muscles did not display VEGF immunoreactions. Our results showed that VEGF and its receptors (flt1/fms, flk1/KDR and flt4) and VEGI were expressed at varying intensity by different cell groups. Therefore, they are also required for the development of the lung component during posthatching period.  相似文献   

3.
Neovascularization of the cornea is characterized by the growth of blood vessels caused by imbalances between angiogenic and anti-angiogenic factors. We investigated whether the expression of Vascular endothelial growth factor (VEGF), Vascular endothelial growth factor receptor (VEGF), Vascular endothelial growth inhibitor (VEGI) receptors, as well as topical drug treatments, participate in regulating corneal neovascularization after corneal damage and remodeling. We used 72 mature male New Zealand rabbits. Corneal burns were induced by hydrofluoric acid under general anesthesia. The rabbits then were treated with indomethacin or dimethyl sulfoxide (DMSO). The animals were euthanized on days 2, 7 and 14 after injury. Each cornea was fixed with 10% neutral formalin. On days 2, 7 and 14, VEGF, flk1/KDR and flt1/fms were strongly expressed in the epithelial, stromal and inflammatory cells, but not in the corneal endothelial cells. On day 7, newly formed blood vessels were observed growing toward the center of the cornea. In the control, indomethacin treated, DMSO–treated, and indomethacin + DMSO–treated animals, VEGI, VEGF, and the receptors, flk1/KDR, flt1/fms and flt4, were expressed at different densities in the neovascular regions. This was particularly evident in the indomethacin- and indomethacin + DMSO–treated groups on days 7 and 14, compared to day 2. Treatment with VEGF and DMSO stimulated repair of corneal damage. We suggest that VEGI in the endothelial cells of neovascularized cornea may act as a signaling protein that promotes balance between cell proliferation and apoptosis. Topical administration of DMSO inhibited corneal neovascularization more effectively than indomethacin.  相似文献   

4.
5.
Sağsöz H  Saruhan BG 《Theriogenology》2011,75(9):1720-1734
The present study was conducted to demonstrate of the immunohistochemical localization of vascular endothelial growth factor (VEGF) and its receptors (flt1/fms, flk1/KDR and flt4) as well as vascular endothelial growth inhibitor (VEGI) and to determine the correlation of VEGF and its receptors and VEGI with serum sex steroids (estrogen and progesterone) in the bovine uterus during the sexual cycle. The stage of the estrous cycle in 30 Holstein cattle was assessed based on the gross and histological appearance of the ovaries and uterus and on blood steroid hormone levels. Tissue samples obtained from the uterus were fixed in 10% formaldehyde for routine histological processing. During both follicular and luteal phases, positive cytoplasmic and membrane staining was achieved for VEGF and its receptors (flt1/fms, flk1/KDR and flt4) as well as VEGI in the luminal and glandular epithelial cells, the connective tissue and smooth muscle cells, and the vascular endothelial cells and smooth muscle cells in the uterus. The intensity, proportional and total scores determined for VEGF and its receptors (flt1/fms and flt4) as well as VEGI were greater in the luminal and glandular epithelial cells compared to the connective tissue and smooth muscle cells (P < 0.05). Furthermore, the number and intensity of the flk1/KDR positive cells were greater among the connective tissue cells compared to the luminal and glandular epithelial cells (P < 0.05). As a result, it was determined that the expression of VEGF and its receptors as well as VEGI in the bovine uterus during the follicular and luteal phases varied with different cell types. This suggests that depending on the stage of the sexual cycle, these factors may mediate the establishment of an appropriate environment for the nutritional supply and implantation of the embryo primarily due to the stimulation of angiogenesis but also through the increase in the secretory activity of the epithelial cells in the uterus. Furthermore, this indicates that ovarian steroid hormones play a significant role in regulating the expression of VEGF and its receptors as well as VEGI.  相似文献   

6.
Previous studies have shown that retinal melatonin plays an important role in the regulation of retinal daily and circadian rhythms. Melatonin exerts its influence by binding to G-protein coupled receptors named melatonin receptor type 1 and type 2 and both receptors are present in the mouse retina. Earlier studies have shown that clock genes are rhythmically expressed in the mouse retina and melatonin signaling may be implicated in the modulation of clock gene expression in this tissue. In this study we determined the daily and circadian expression patterns of Per1, Per2, Bmal1, Dbp, Nampt and c-fos in the retina and in the photoreceptor layer (using laser capture microdissection) in C3H-f+/+ and in melatonin receptors of knockout (MT1 and MT2) of the same genetic background using real-time quantitative RT-PCR. Our data indicated that clock and clock-controlled genes are rhythmically expressed in the retina and in the photoreceptor layer. Removal of melatonin signaling significantly affected the pattern of expression in the retina whereas in the photoreceptor layer only the Bmal1 circadian pattern of expression was affected by melatonin signaling removal. In conclusion, our data further support the notion that melatonin signaling may be important for the regulation of clock gene expression in the inner or ganglion cells layer, but not in photoreceptors.  相似文献   

7.
8.
The vascular endothelial growth factor (VEGF) family belong to the platelet‐derived growth factor supergene family and is involved in angiogenesis and mitogenesis. The VEGF–VEGFR system regulates endothelial cell proliferation, migration, vascular permeability, secretion and other non‐endothelial cells functions. To clarify the possible role of endothelial and non‐endothelial cells, VEGF and its receptors, vascular endothelial cell growth inhibitor (VEGI) were immunohistochemically examined in oropharyngeal organs. Ten adult partridges were used in this study and the pharynx and larynx were dissected together with the palate and tongue. VEGI, VEGF and its receptor were highly expressed in luminal epithelial and stromal cells, when compared to glandular epithelial and muscle cells (P < 0.05). Moreover, VEGF, its receptors and VEGI were expressed rather strongly in the endothelial cells of the blood capillaries and in both the endothelial and smooth muscle cells of the large and small blood vessels. In conclusion, VEGF and its receptors (flt1/fms, flk1/KDR and flt4) and VEGI were expressed by various cell groups at varying intensity in the oropharyngeal organs. This demonstrates that they play a critical role in the regulation and maintenance of the functions in cells different from endothelial ones as well as in cell proliferation, differentiation, apoptosis and angiogenesis.  相似文献   

9.
10.
Glutamate is well established as an excitatory neurotransmitter in the vertebrate retina. Its role as a modulator of retinal function, however, is poorly understood. We used immunocytochemistry and calcium imaging techniques to investigate whether metabotropic glutamate receptors are expressed in the chicken retina and by identified GABAergic amacrine cells in culture. Antibody labeling for both metabotropic glutamate receptors 1 and 5 in the retina was consistent with their expression by amacrine cells as well as by other retinal cell types. In double-labeling experiments, most metabotropic glutamate receptor 1-positive cell bodies in the inner nuclear layer also label with anti-GABA antibodies. GABAergic amacrine cells in culture were also labeled by metabotropic glutamate receptor 1 and 5 antibodies. Metabotropic glutamate receptor agonists elicited Ca(2+) elevations in cultured amacrine cells, indicating that these receptors were functionally expressed. Cytosolic Ca(2+) elevations were enhanced by metabotropic glutamate receptor 1-selective antagonists, suggesting that metabotropic glutamate receptor 1 activity might normally inhibit the Ca(2+) signaling activity of metabotropic glutamate receptor 5. These results demonstrate expression of group I metabotropic glutamate receptors in the avian retina and suggest that glutamate released from bipolar cells onto amacrine cells might act to modulate the function of these cells.  相似文献   

11.
Bone morphogenetic proteins (BMPs) act repeatedly in the development of nervous system tissues. While BMP signaling is critical for the early growth and patterning of the eye, we are interested in possible later functions of BMPs in the morphological development of retinal neurons and formation of synaptic connections. Therefore, we conducted an in situ hybridization analysis of the mRNA expression for the ligands Bmp2, -4 and 7 and the type Ia, Ib and II receptors (BmprIa, BmprIb and BmprII) during development of the retina of Xenopus laevis. Bmp4 mRNA is expressed in the dorsal retina and Bmp7 in the distal peripheral retina during the period of cell differentiation, while Bmp2 is not present in the eye. The type I receptors are expressed predominantly ventrally, from the optic vesicle stage until at least stage 35/36, after most cells have differentiated and many synaptic connections have formed. BmprII mRNA, however, is distributed evenly across the dorsoventral axis, with highest expression in retinal ganglion cell and inner nuclear layers.  相似文献   

12.
13.
14.
Host response to infectious agents must be rapid and powerful. One mechanism is the release of presynthesized membrane-bound TNF. TNF shedding is mediated by TNF-alpha converting enzyme, which is selectively inhibited by the tissue inhibitor of metalloproteinase 3 (TIMP3). We show that loss of TIMP3 impacts innate immunity by dysregulating cleavage of TNF and its receptors. Cultured timp3-/- macrophages release more TNF in response to LPS than wild-type macrophages. In timp3-/- mice, LPS causes serum levels of TNF and its receptors to rise more rapidly and remain higher compared with wild-type mice. The altered kinetics of ligand and receptor shedding enhances TNF signaling in timp3-/- mice, indicated by elevated serum IL-6. Physiologically, timp3-/- mice are more susceptible to LPS-induced mortality. Ablation of the TNF receptor gene p55 (Tnfrsf1a) or treatment with a synthetic metalloproteinase inhibitor rescues timp3-/- mice. Thus, TIMP3 is essential for normal innate immune function.  相似文献   

15.
In order to investigate whether N-methyl-D-aspartate (NMDA) receptors with distinct pharmacological properties are differentially distributed within the retinal layers, the spatial distribution and temporal regulation of all NMDA receptor subunits was analyzed in parallel on the protein level in the rat retina during development. Immunohistochemistry was performed on retinal sections at different developmental ages between embryonic (E) days 20/21 and the adult stage using specific antibodies against NMDA subunits (NR1, NR2A-D). All NMDA subunits were expressed in the rat retina postnatally but showed different spatial patterns. In particular, and in contrast to previous in situ hybridization studies, labeling of NR2 subunits was observed in horizontal cell bodies and in the outer plexiform layer, indicating that functional NMDA receptors are expressed in this retinal cell type in the rat. Expression of NR2D was restricted to the inner retina and seemed to be involved in neurotransmission within the rod pathway. In the inner plexiform layer (IPL), distinct patterns of labeling were observed for different NMDA subunits. NR1 was found in two bands which can be related to the off- and on-signal pathways, whereas NR2A and NR2B were located in two bands within the off-sublaminae of the IPL. The antibody against NR2C was distributed throughout the whole IPL, and NR2D was expressed exclusively in the innermost part of the IPL where rod bipolar cell terminals terminate. Distinct bands of immunoreactivity in the IPL were observed only from P14 on. In conclusion, there are clear differences in the spatial distribution and temporal expression of NMDA receptor subtypes in the rodent retina. This indicates that specific retinal cells selectively express glutamate receptors composed of different subunit combinations and thus display different pharmacological and kinetic properties.  相似文献   

16.
Loss of photoreceptors leads to significant remodeling in inner retina of rd1 mouse, a widely used model of retinal degeneration. Several morphological and physiological alterations occur in the second- and third-order retinal neurons. Synaptic activity in the excitatory bipolar cells and the predominantly inhibitory amacrine cells is enhanced. Retinal ganglion cells (RGCs) exhibit hyperactivity and aberrant spiking pattern, which adversely affects the quality of signals they can carry to the brain. To further understand the pathophysiology of retinal degeneration, and how it may lead to aberrant spiking in RGCs, we asked how loss of photoreceptors affects some of the neurotransmitter receptors in rd1 mouse. Using Western blotting, we measured the levels of several neurotransmitter receptors in adult rd1 mouse retina. We found significantly higher levels of AMPA, glycine and GABAa receptors, but lower levels of GABAc receptors in rd1 mouse than in wild-type. Since GABAa receptor is expressed in several retinal layers, we employed quantitative immunohistochemistry to measure GABAa receptor levels in specific retinal layers. We found that the levels of GABAa receptors in inner plexiform layer of wild-type and rd1 mice were similar, whereas those in outer plexiform layer and inner nuclear layer combined were higher in rd1 mouse. Specifically, we found that the number of GABAa-immunoreactive somas in the inner nuclear layer of rd1 mouse retina was significantly higher than in wild-type. These findings provide further insights into neurochemical remodeling in the inner retina of rd1 mouse, and how it might lead to oscillatory activity in RGCs.  相似文献   

17.
The teleost Astyanax mexicanus exhibits eyed surface dwelling (surface fish) and blind cave dwelling (cavefish) forms. Despite lacking functional eyes as adults, cavefish embryos form eye primordia, which later arrest in development, degenerate and sink into the orbit. We are comparing the expression patterns of various eye regulatory genes during surfacefish and cavefish development to determine the cause of eye degeneration. Here we examine Rx and Chx/Vsx family homeobox genes, which have a major role in cell proliferation in the vertebrate retina. We isolated and sequenced a full-length RxcDNA clone (As-Rx1) and part of a Chx/Vsx(As-Vsx2) gene, which appear to be most closely related to the zebrafish Rx1 and Alx/Vsx2 genes respectively. In situ hybridization shows that these genes have similar but non-identical expression patterns during Astyanax eye development. Expression is first detected in the optic vesicle, then throughout the presumptive retina of the optic cup, and finally in the ciliary marginal zone (CMZ), the region of the growing retina where most new retinoblasts are formed. In addition, As-Rx1 is expressed in the outer nuclear layer (ONL) of the retina, which contains the photoreceptor cells, and As-Vsx2 is expressed in the inner nuclear layer, probably in the bipolar cells. With the exception of reduced As-Rx-1 expression in the ONL, the As-Rx1 and As-Vsx2 expression patterns were unchanged in the developing retina of two different cavefish populations, suggesting that cell proliferation is not inhibited. These results were confirmed by using PCNA and BrdU markers for retinal cell division. We conclude that the CMZ is active in cell proliferation long after eye growth is diminished and is therefore not the major cause of eye degeneration.  相似文献   

18.
Pax-6 expression during retinal regeneration in the adult newt   总被引:4,自引:0,他引:4  
The present study examined the expression of Pax-6 during retinal regeneration in adult newts using in situ hybridization. In a normal retina, Pax-6 is expressed in the ciliary marginal zone, the inner part of the inner nuclear layer, and the ganglion cell layer. After surgical removal of the neural retina, retinal pigment epithelial cells proliferate into retinal precursor cells and regenerate a fully functional retina. At the beginning of retinal regeneration, Pax-6 was expressed in all retinal precursor cells. As regeneration proceeded, differentiating cells appeared at the scleral and vitreal margins of the regenerating retina, which had no distinct plexiform layers. In this stage, the expression of Pax-6 was localized in a strip of cells along the vitreal margin of the regenerating retina. In the late stage of regeneration, when the layer structure was completed, the expression pattern of Pax-6 became similar to that of a normal retina. It was found that Pax-6 is expressed in the retinal precursor cells in the early regenerating retina and that the expression pattern of Pax-6 changed as cell differentiation proceeded during retinal regeneration.  相似文献   

19.
20.
The possible presence and action of growth hormone (GH) in the neural retina was investigated in newborn mice. The neural retina was found to be a site of GH gene expression, as GH mRNA was abundant in cells of the retinal ganglion cell layer, in which GH was also detected. It was also a site of GH action, since GH receptor (GHR) immunoreactivity mirrored that of GH. Actions of GH within the eye were indicated by a reduction in its axial length and retinal width (its neuroblastic, inner plexiform, and optic fiber layers) in GHR gene disrupted mice (GHR-/-), in comparison with wild type (GHR+/+) littermates. In the absence of GH signaling, four proteins in the retinal proteome of the GHR-/- mice (identified by 2-D gels and MS) differed in abundance with those in the wild type mice. Brain abundant membrane attached signal protein-1 (BASP-1) was down-regulated, whereas protein kinase C inhibitor 1, cyclophilin A, KH domain-containing, RNA-binding, signal transduction-associated protein 3 were up-regulated in GHR-/- mice. These proteins are involved in retinal vascularization, neural proliferation and neurite outgrowth. GH might thus have hitherto unsuspected roles in these processes during retinal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号