首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
在生理状态下,细胞通过自噬清除衰老细胞器和异常长寿蛋白质,维持自身结构和功能的衡定,参与胚胎发育、免疫调节和延长寿命。病理状态下细胞自噬水平显著升高,以耐受饥饿、缺血和凋亡。自噬功能障碍与某些慢性感染疾病、神经变性疾病、溶酶体贮积症和肿瘤等密切相关。掌握和合理应用自噬研究技术对于提高细胞自噬研究水平有着重要意义。该文对哺乳类细胞自噬研究技术进展及其应用作了概述。  相似文献   

2.
Fan XN  Wang G  Chen SD 《生理科学进展》2010,41(4):272-274
自噬是一种存在于正常细胞和病态细胞中的非选择性的降解机制,其主要作用是在营养缺乏的情况下为细胞生长代谢提供必要的大分子物质和能量并清除细胞内过剩或有缺陷的细胞器。近年的研究认为自噬溶酶体途径(autophagy-lysosome pathway,ALP)参与了包括帕金森病(Parkin-son's disease,PD)在内的多种神经变性疾病的发病并在其中起关键作用。本文就ALP参与PD的发病和病理生理过程及其调节因素做一综述。  相似文献   

3.
席兴宇 《生命科学》2010,(10):991-994
分子伴侣介导的细胞自噬(chaperone-mediated autophagy,CMA)是通过溶酶体途径选择性降解胞质中带KFERQ-序列的蛋白质。CMA不仅为细胞在持久饥饿状态下提供能量,还在氧化性损伤保护、维持细胞内环境稳态等方面发挥作用。此外,CMA功能障碍还与某些疾病的发生有关。该文简要综述了这方面的研究进展。  相似文献   

4.
干细胞具有自我更新和分化成其他细胞类型的能力。一些因素如衰老和抗癌治疗等会引起毒性蛋白和受损细胞器在干细胞中堆积,严重影响干细胞的功能。细胞自噬是一条依赖溶酶体的蛋白质降解途径,负责清除胞质内异常的蛋白质聚集体和失去功能的细胞器,在维持细胞内稳态方面发挥重要的生理功能。近年来的研究表明,细胞自噬对干细胞功能的维持非常重要,综述了细胞自噬的分子机制及其在干细胞中的作用的研究进展。  相似文献   

5.
阿尔茨海默病(Alzheimer’s disease, AD)是一种常见的神经退行性疾病。自噬溶酶体功能异常阻碍了细胞对神经毒性物质的降解,是导致AD发生的关键因素。运动作为一种非药物治疗手段,可以通过激活PI3K/Akt、AMPK等相关信号通路上调自噬活性,并通过促进TFEB的核易位增强自噬溶酶体功能,提高对异常聚集蛋白和受损伤细胞器的降解,保护神经元,改善AD患者的认知功能障碍。本文阐述了自噬溶酶体功能障碍在AD发生发展中的作用,以及运动调控自噬溶酶体通路改善AD作用机制,旨在为AD的预防和治疗提供新策略。  相似文献   

6.
自噬是真核细胞中进化上高度保守的、用于降解和回收利用细胞内生物大分子和受损细胞器的过程。自噬的完成依赖于正常的溶酶体功能,与机体的多种生理和病理过程密切相关。自噬研究已成为当前生命科学研究的热点,揭示自噬的发生机制、自噬与疾病发生的关系对预防与治疗多种人类重大疾病具有重要意义。该文旨在概括目前自噬的研究进展,重点介绍细胞自噬的发生机制及其与疾病的关系。  相似文献   

7.
脑卒中是由脑血管阻塞或出血引发的急性脑血管病,约84%的临床脑卒中患者由脑缺血引起。研究表明,自噬广泛参与并显著影响脑卒中病理生理进程。自噬是一个将陈旧蛋白质、损伤细胞器及多余胞质组分等呈递给溶酶体进行降解的代谢过程,其包括自噬的激活、自噬体的形成和成熟、自噬体与溶酶体融合、自噬产物在自噬溶酶体内消化和降解等过程。自噬流通常被定义为自噬/溶酶体信号机制。最近发现,自噬流障碍是导致缺血性脑卒中后神经元损伤的重要原因,而在自噬过程中任一步骤发生障碍均可导致自噬流损伤。本文重点对自噬体-溶酶体融合的机制,以及该机制在缺血性脑卒中后发生障碍的致病机理进行详细阐述,以期基于自噬体-溶酶体融合机制对神经元自噬流进行调节,进而诱导缺血性脑卒中后的神经保护。本文可为脑卒中病理机制研究指明方向,为脑卒中治疗探寻新的线索。  相似文献   

8.
《昆虫知识》2009,(4):495-496
神经病靶酯酶(neuropathy target esterase,NTE)是在研究有机磷引起的迟发性神经病(organophosphateinduced delayed neuropathy,OPIDN)的机理的过程中被发现的。NTE被认为是诱导OPIDN发生的起始靶标。研究证明,NTE是一种内质网上的跨膜蛋白,属于一种新的磷脂酶B。  相似文献   

9.
细胞自噬是一种广泛存在于真核生物细胞中的代谢过程,参与调控胞内物质合成、降解和重新利用之间的代谢平衡。自噬体与溶酶体的有效融合能有效地保障胞内多余物质的降解及其再利用,是真核细胞所特有的一种自我保护机制。细胞自噬近年来受到广泛的关注,其不仅能充当胞内一个合格的质检员,有效地降解胞内受损的蛋白质成分和细胞器,进而阻止细胞损伤和凋亡,也与肿瘤发生、衰老、神经退行性疾病、人体自身免疫性疾病、肥胖症和糖尿病等多种疾病的发生及发展密切相关。本文旨在对细胞自噬过程和其调控机制进行介绍,并侧重对自噬在生长发育和肿瘤发生中的作用进行综述,为预防与治疗多种人类重大疾病提供理论依据。  相似文献   

10.
自噬是细胞中一种进化上保守的生物学过程,通过降解受损的细胞器和多余的蛋白质使细胞在应激损伤时能够维持正常的平衡。它包括一系列连续的过程,如吞噬泡的形成与延伸、自噬体的成熟、自噬体与溶酶体的融合等。目前,对于调节自噬过程不同阶段的分子机制以及在疾病发展中作用的认识正逐渐加强。本文综述了近几年来细胞自噬在多种器官纤维化病变中的研究进展,着重整理归纳与疾病相关的发生机制,以期为纤维化疾病的治疗提供新的理论指导和临床思路。  相似文献   

11.
Microautophagy is originally defined as lysosomal (vacuolar) membrane dynamics to directly enwrap and transport cytosolic components into the lumen of the lytic organelle. Molecular details of microautophagy had remained unknown until genetic studies in yeast identified a set of proteins required for the process. Subsequent studies with other experimental model organisms resulted in a series of discoveries that accompanied an expansion of the definition of microautophagy to also encompass endosomal membrane dynamics. These findings, however, still impose puzzling, non‐integrated images as to the molecular mechanism of microautophagy. By reviewing recent studies on microautophagy in various experimental systems, we propose the classification of microautophagy into three types, as the basis for developing a comprehensive view of the process.  相似文献   

12.
《Autophagy》2013,9(12):1922-1936
Just as with yeasts and animal cells, plant cells show several types of autophagy. Microautophagy is the uptake of cellular constituents by the vacuolar membrane. Although microautophagy seems frequent in plants it is not yet fully proven to occur. Macroautophagy occurs farther away from the vacuole. In plants it is performed by autolysosomes, which are considerably different from the autophagosomes found in yeasts and animal cells, as in plants these organelles contain hydrolases from the onset of their formation. Another type of autophagy in plant cells (called mega-autophagy or mega-autolysis) is the massive degradation of the cell at the end of one type of programmed cell death (PCD). Furthermore, evidence has been found for autophagy during degradation of specific proteins, and during the internal degeneration of chloroplasts. This paper gives a brief overview of the present knowledge on the ultrastructure of autophagic processes in plants.  相似文献   

13.
14.
Autophagy delivers cytosolic components to lysosomes for degradation and is thus essential for cellular homeostasis and to cope with different stressors. As such, autophagy counteracts various human diseases and its reduction leads to aging-like phenotypes. Macroautophagy (MA) can selectively degrade organelles or aggregated proteins, whereas selective degradation of single proteins has only been described for chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI). These 2 autophagic pathways are specific for proteins containing KFERQ-related targeting motifs. Using a KFERQ-tagged fluorescent biosensor, we have identified an eMI-like pathway in Drosophila melanogaster. We show that this biosensor localizes to late endosomes and lysosomes upon prolonged starvation in a KFERQ- and Hsc70-4- dependent manner. Furthermore, fly eMI requires endosomal multivesicular body formation mediated by ESCRT complex components. Importantly, induction of Drosophila eMI requires longer starvation than the induction of MA and is independent of the critical MA genes atg5, atg7, and atg12. Furthermore, inhibition of Tor signaling induces eMI in flies under nutrient rich conditions, and, as eMI in Drosophila also requires atg1 and atg13, our data suggest that these genes may have a novel, additional role in regulating eMI in flies. Overall, our data provide the first evidence for a novel, starvation-inducible, catabolic process resembling endosomal microautophagy in the Drosophila fat body.  相似文献   

15.
16.
Selective macroautophagy/autophagy plays a pivotal role in the processing of foreign pathogens and cellular components to maintain homeostasis in human cells. To date, numerous studies have demonstrated the uptake of nanoparticles by cells, but their intracellular processing through selective autophagy remains unclear. Here we show that carbon-based nanodiamonds (NDs) coated with ubiquitin (Ub) bind to autophagy receptors (SQSTM1 [sequestosome 1], OPTN [optineurin], and CALCOCO2/NDP52 [calcium binding and coiled-coil domain 2]) and are then linked to MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) for entry into the selective autophagy pathway. NDs are ultimately delivered to lysosomes. Ectopically expressed SQSTM1-green fluorescence protein (GFP) could bind to the Ub-coated NDs. By contrast, the Ub-associated domain mutant of SQSTM1 (ΔUBA)-GFP did not bind to the Ub-coated NDs. Chloroquine, an autophagy inhibitor, prevented the ND-containing autophagosomes from fusing with lysosomes. Furthermore, autophagy receptors OPTN and CALCOCO2/NDP52, involved in the processing of bacteria, were found to be involved in the selective autophagy of NDs. However, ND particles located in the lysosomes of cells did not induce mitotic blockage, senescence, or cell death. Single ND clusters in the lysosomes of cells were observed in the xenografted human lung tumors of nude mice. This study demonstrated for the first time that Ub-coated nanoparticles bind to autophagy receptors for entry into the selective autophagy pathway, facilitating their delivery to lysosomes.  相似文献   

17.
Starvation is a fundamental type of stress naturally occurring in biological systems. All organisms have therefore evolved different safeguard mechanisms to cope with deficiencies in various types of nutrients. Cells, from yeast to humans, typically respond to amino acid starvation by initiating degradation of cellular components by inducing autophagy. This degradation releases metabolic building blocks to sustain essential core cellular processes. Increasing evidence indicates that starvation-induced autophagy also acts to prepare cells for prolonged starvation by degrading key regulators of different cellular processes. In a recent study, we found that within the first hours of amino acid starvation cells elicit an autophagic response causing rapid degradation of specific proteins. The response is executed independently of both MTOR and canonical macroautophagy. Based on RNAi-mediated knockdown of essential components of the Endosomal Sorting Complex Required for Transport (ESCRT) machinery and electron microscopy we conclude that the response relies on some sort of endosomal microautophagy, hence vesicle budding into endosomes. Substantiated by the different substrates that are selectively degraded by this novel pathway we propose that the response predominantly acts to prepare cells for prolonged starvation. Intriguingly, this includes shutting down selective macroautophagy in preparation for a massive induction of bulk macroautophagy.  相似文献   

18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号