首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infected peripheral blood monocytes are proposed to play a key role in the hematogenous dissemination of human cytomegalovirus (HCMV) to tissues, a critical step in the establishment of HCMV persistence and the development of HCMV-associated diseases. We recently provided evidence for a unique strategy involved in viral dissemination: HCMV infection of primary human monocytes promotes their transendothelial migration and differentiation into proinflammatory macrophages permissive for the replication of the original input virus. To decipher the mechanism of hematogenous spread, we focused on the viral dysregulation of early cellular processes involved in transendothelial migration. Here, we present evidence that both phosphatidylinositol 3-kinase [PI(3)K] and NF-kappaB activities were crucial for the HCMV induction of monocyte motility and firm adhesion to endothelial cells. We found that the beta(1) integrins, the beta(2) integrins, intracellular adhesion molecule 1 (ICAM-1), and ICAM-3 were upregulated following HCMV infection and that they played a key role in the firm adhesion of infected monocytes to the endothelium. The viral regulation of adhesion molecule expression is complex, with PI(3)K and NF-kappaB affecting the expression of each adhesion molecule at different stages of the expression cascade. Our data demonstrate key roles for PI(3)K and NF-kappaB signaling in the HCMV-induced cellular changes in monocytes and identify the biological rationale for the activation of these pathways in infected monocytes, which together suggest a mechanism for how HCMV promotes viral spread to and persistence within host organs.  相似文献   

2.
Previous studies have shown that the ability of Mycobacterium tuberculosis to block a Ca(2+) flux is an important step in its capacity to halt phagosome maturation. This affect on Ca(2+) release results from M. tuberculosis inhibition of sphingosine kinase (SPK) activity. However, these studies did not address the potential role of SPK and Ca(2+) in other aspects of macrophage activation including production of proinflammatory mediators. We previously showed that nonpathogenic Mycobacterium smegmatis and to a lesser extent pathogenic Mycobacterium avium, activate Ca(2+)-dependent calmodulin/calmodulin kinase and MAPK pathways in murine macrophages leading to TNF-alpha production. However, whether SPK functions in promoting MAPK activation upon mycobacterial infection was not defined in these studies. In the present work we found that SPK is required for ERK1/2 activation in murine macrophages infected with either M. avium or M. smegmatis. Phosphoinositide-specific phospholipase C (PI-PLC) and conventional protein kinase C (cPKC) were also important for ERK1/2 activation. Moreover, there was increased activation of cPKC and PI3K in macrophages infected with M. smegmatis compared with M. avium. This cPKC and PI3K activation was dependent on SPK and PI-PLC. Finally, in macrophages infected with M. smegmatis compared with M. avium, we observed enhanced secretion of TNF-alpha, IL-6, RANTES, and G-CSF and found production of these inflammatory mediators to be dependent on SPK, PI-PLC, cPKC, and PI3K. These studies are the first to show that the macrophage proinflammatory response following a mycobacterial infection is regulated by SPK/PI-PLC/PKC activation of ERK1/2 and PI3K pathways.  相似文献   

3.
NO produced by inducible NO synthase (iNOS) has been implicated in various pathophysiological processes including inflammation. Therefore, inhibitors of NO synthesis or iNOS gene expression have been considered as potential anti-inflammatory agents. We have previously demonstrated that heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) decreases proinflammatory cytokine IL-8 and NO production in cytokine-stimulated intestinal epithelial cells by interfering with the NF-kappaB signaling pathway. However, the upstream signaling mechanisms involved in these responses have not yet been defined. In this report, we show that in intestinal epithelial cells, HB-EGF triggered PI3K-dependent phosphorylation of Akt. Inhibition of PI3K reversed the ability of HB-EGF to block NF-kappaB activation, expression of iNOS, and NO production. Small interfering RNA of PI3K also reversed the inhibitory effect of HB-EGF on iNOS expression. Alternatively, transient expression of constitutively active PI3K decreased NO production by approximately 2-fold more than treatment with HB-EGF alone. This PI3K effect was HB-EGF dependent. Thus, activation of PI3K is essential but not sufficient for decreased NO synthesis. PI3K and HB-EGF act synergistically to decrease NO synthesis. Neither overexpression or inhibition of MEK, Ras, or Akt affected HB-EGF-mediated inhibition of NF-kappaB activation. These data demonstrate that HB-EGF decreases proinflammatory cytokine-stimulated NF-kappaB activation and NO production via activation of the PI3K signaling pathway. These results also suggest that inhibition of NF-kappaB and activation of the PI3K-dependent signaling cascade by HB-EGF may represent key signals responsible for the anti-inflammatory effects of HB-EGF.  相似文献   

4.
5.
Neutrophils are abundant, short-lived leukocytes with a key role in the defense against rapidly dividing bacteria. They enter apoptosis spontaneously within 24-48 h of leaving the bone marrow. However, their life span can be extended during inflammatory responses by several proinflammatory cytokines. Inappropriate survival of neutrophils contributes to chronic inflammation and tissue damage associated with diseases such as rheumatoid arthritis. We have previously reported that type I IFNs can inhibit both cytokine deprivation and Fas-induced apoptosis in activated T cells. IFN-beta locally produced by hyperplastic fibroblasts within the pannus tissue of patients with rheumatoid arthritis contributes to the inappropriately extended life span of infiltrating T cells. Type I IFNs are equally effective at delaying spontaneous apoptosis in human neutrophils. In the work presented here we investigated the signaling pathways involved in mediating this effect. The antiapoptotic actions of IFN-beta were targeted at an early stage of neutrophil apoptosis, occurring upstream of mitochondrial permeability transition, and were phosphatidylinositol 3-kinase (PI3K) dependent, as they were blocked by the PI3K inhibitor LY294002. Analysis of signaling pathways downstream of PI3K revealed that the antiapoptotic effect of type 1 IFN was inhibited by rottlerin, SN50, and cycloheximide, indicating requirements for activation of protein kinase C-delta, NF-kappaB, and de novo protein synthesis, respectively. Moreover, EMSA was used to show that the activation of NF-kappaB occurred downstream of PI3K and protein kinase C-delta activation. We conclude that type I IFNs inhibit neutrophil apoptosis in a PI3K-dependent manner, which requires activation of protein kinase C-delta and induction of NF-kappaB-regulated genes.  相似文献   

6.
Viral infection is associated with a vigorous inflammatory response characterized by cellular infiltration and release of the proinflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha). In the present study, we identified a novel function of human cytomegalovirus (HCMV) that results in inhibition of IL-1 and TNF-alpha signaling pathways. The effect on these pathways was limited to cells infected with the virus, occurred at late times of infection, and was independent of cell type or virus strain. IL-1 and TNF-alpha signaling pathways converge at a point upstream of NF-kappaB activation and involve phosphorylation and degradation of the NF-kappaB inhibitory molecule IkappaBalpha. The HCMV inhibition of IL-1 and TNF-alpha pathways corresponded to a suppression of NF-kappaB activation. Analysis of IkappaBalpha phosphorylation and degradation suggested that HCMV induced two independent blocks in NF-kappaB activation, which occurred upstream from the point of convergence of the IL-1 and TNF-alpha pathways. We believe that the ability of HCMV to inhibit these two major proinflammatory pathways reveals a critical aspect of HCMV biology, with possible importance for immune evasion, as well as establishment of infection in cell types persistently infected by this virus.  相似文献   

7.
8.
The Gram-negative bacterium Francisella novicida infects primarily monocytes/macrophages and is highly virulent in mice. Macrophages respond by producing inflammatory cytokines that confer immunity against the infection. However, the molecular details of host cell response to Francisella infection are poorly understood. In this study, we demonstrate that F. novicida infection of murine macrophages induces the activation of Akt. Inhibition of Akt significantly decreases proinflammatory cytokine production in infected macrophages, whereas production of the anti-inflammatory cytokine IL-10 is enhanced. Analysis of the mechanism of Akt influence on cytokine response demonstrated that Akt promotes NF-kappaB activation. We have extended these findings to show that Akt activation may be regulated by bacterial genes associated with phagosomal escape. Infection with mglA mutants of F. novicida elicited sustained activation of Akt in comparison to cells infected with wild-type F. novicida. Concomitantly, there was significantly higher proinflammatory cytokine production and lower IL-10 production in cells infected with the mglA mutant. Finally, transgenic animals expressing constitutively active Akt displayed a survival advantage over their wild-type littermates when challenged with lethal doses of F. novicida. Together, these observations indicate that Akt promotes proinflammatory cytokine production by F. novicida-infected macrophages through its influence on NF-kappaB, thereby contributing to immunity against F. novicida infection.  相似文献   

9.
10.
11.
12.
13.
14.
To continue our investigation of the cellular events that occur following human CMV (HCMV) infection, we focused on the regulation of cellular activation following viral binding to human monocytes. First, we showed that viral binding induced a number of immunoregulatory genes (IL-1beta, A20, NF-kappaB-p105/p50, and IkappaBalpha) in unactivated monocytes and that neutralizing Abs to the major HCMV glycoproteins, gB (UL55) and gH (UL75), inhibited the induction of these genes. Next, we demonstrated that these viral ligands directly up-regulated monocyte gene expression upon their binding to their appropriate cellular receptors. We then investigated if HCMV binding also resulted in the translation and secretion of cytokines. Our results showed that HCMV binding to monocytes resulted in the production and release of IL-1beta protein. Because these induced gene products have NF-kappaB sites in their promoter regions, we next examined whether there was an up-regulation of nuclear NF-kappaB levels. These experiments showed that, in fact, NF-kappaB was translocated to the nucleus following viral binding or purified viral ligand binding. Changes in IkappaBalpha levels correlated with the changes in NF-kappaB translocation. Lastly, we demonstrated that p38 kinase activity played a central role in IL-1beta production and that it was rapidly up-regulated following infection. These results support our hypothesis that HCMV initiates a signal transduction pathway that leads to monocyte activation and pinpoints a potential mechanism whereby HCMV infection of monocytes can result in profound pathogenesis, especially in chronic inflammatory-type conditions.  相似文献   

15.
Both phosphatidylinositol 3-kinase (PI3K)/Akt and NF-kappaB pathways function to promote cellular survival following stress. Recent evidence indicates that the anti-apoptotic activity of these two pathways may be functionally dependent. Ultraviolet (UV) irradiation causes oxidative stress, which can lead to apoptotic cell death. Human skin cells (keratinocytes) are commonly exposed to UV irradiation from the sun. We have investigated activation of the PI3K/Akt and NF-kappaB pathways and their roles in protecting human keratinocytes (KCs) from UV irradiation-induced apoptosis. This activation of PI3K preceded increased levels (3-fold) of active/phosphorylated Akt. UV (50 mJ/cm2 from UVB source) irradiation caused rapid recruitment of PI3K to the epidermal growth factor receptor (EGFR). Pretreatment of KCs with EGFR inhibitor PD169540 abolished UV-induced Akt activation/phosphorylation, as did the PI3K inhibitors LY294002 or wortmannin. This inhibition of Akt activation was associated with a 3-4-fold increase of UV-induced apoptosis, as measured by flow cytometry and DNA fragmentation ELISA. In contrast to Akt, UV irradiation did not detectably increase nuclear localization of NF-kappaB, indicating that it was not strongly activated. Consistent with this observation, interference with NF-kappaB activation by adenovirus-mediated overexpression of dominant negative IKK-beta or IkappaB-alpha did not increase UV-induced apoptosis. However, adenovirus-mediated overexpression of constitutively active Akt completely blocked UV-induced apoptosis observed with PI3K inhibition by LY294002, whereas adenovirus mediated overexpression of dominant negative Akt increased UV-induced apoptosis by 2-fold. Inhibition of UV-induced activation of Akt increased release of mitochondrial cytochrome c 3.5-fold, and caused appearance of active forms of caspase-9, caspase-8, and caspase-3. Constitutively active Akt abolished UV-induced cytochrome c release and activation of caspases-9, -8, and -3. These data demonstrate that PI3K/Akt is essential for protecting human KCs against UV-induced apoptosis, whereas NF-kappaB pathway provides little, if any, protective role.  相似文献   

16.
In this study, we found that infection with flaviviruses, such as Japanese encephalitis virus (JEV) and dengue virus serotype 2 (DEN-2), leads to interferon-beta (IFN-beta) gene expression in a virus-replication- and de novo protein-synthesis-dependent manner. NF-kappaB activation is essential for IFN-beta induction in JEV- and DEN-2-infected cells. However, these two viruses seem to preferentially target different members of the interferon regulatory factor (IRF) family. The activation of constitutively expressed IRF-3, characterized by slower gel mobility, dimer formation, and nuclear translocation, is more evident in JEV-infected cells. Other members of the IRF family, such as IRF-1 and IRF-7 are also induced by DEN-2, but not by JEV infection. The upstream molecules responsible for IRF-3 and NF-kappaB activation were further studied. Evidently, a cellular RNA helicase, retinoic acid-inducible gene I (RIG-I), and a cellular kinase, phosphatidylinositol-3 kinase (PI3K), are required for flavivirus-induced IRF-3 and NF-kappaB activation, respectively. Therefore, we suggest that JEV and DEN-2 initiate the host innate immune response through a molecular mechanism involving RIG-I/IRF-3 and PI3K/NF-kappaB signaling pathways.  相似文献   

17.
Stimulation of the APC by Porphyromonas gingivalis LPS has been shown to result in the production of certain pro- and anti-inflammatory cytokines. However, the signaling pathways that regulate these processes are currently unknown. In the present study, the role of the phosphatidylinositol 3 kinase (PI3K)-Akt pathway in regulating P. gingivalis LPS-induced production of IL-10, IL-12 p40, and IL-12 p70 by human monocytes was investigated. P. gingivalis LPS selectively activates the PI3K-Akt pathway via Toll-like receptor 2, and inhibition of this pathway results in an abrogation of extracellular signal-regulated kinase 1/2 phosphorylation, whereas the activation of p38 and c-Jun N-terminal kinase 1/2 kinases were unaffected. Analysis of cytokine production following stimulation of monocytes with P. gingivalis LPS revealed that inhibition of the PI3K pathway differentially regulated IL-10 and IL-12 synthesis. IL-10 production was suppressed, whereas IL-12 levels were enhanced. Inhibition of P. gingivalis LPS-mediated activation of the PI3K-Akt pathway resulted in a pronounced augmentation of NF-kappaB p65 that was independent of IkappaB-alpha degradation. Furthermore, the ability of the PI3K-Akt pathway to modulate IL-10 and IL-12 production appears to be mediated by the selective suppression of extracellular signal-regulated kinase 1/2 activity, as the MEK1 inhibitor PD98059 closely mimicked the effects of wortmannin and LY294002 to differentially regulate IL-10 and IL-12 production by P. gingivalis LPS-stimulated monocytes. These studies provide new insight into how engagement of the PI3K-Akt pathway by P. gingivalis LPS affects the induction of key immunoregulatory cytokines that control both qualitative and quantitative aspects of innate and adaptive immunity.  相似文献   

18.
CCL5 is a key in limiting mycobacterial infection. Although NF-κB has been implicated, signaling cascades involved in CCL5 production by epithelial cells following infection with Mycobacterium bovis BCG are still not defined. Here we show that using pharmacological inhibition of sphingosine kinase (SPK), striking inhibition of M. bovis BCG-induced CCL5 protein was observed. Phosphatidylinositol 3-kinase (PI3K) and Akt were also important for CCL5 production by epithelial cells infected with M. bovis BCG. Moreover, there was increased activation of PI3K, IKK/αβ and NF-κB in A549 cells infected with M. bovis BCG. Importantly, the PI3K activation was dependent on SPK. Finally, M. bovis BCG increases the recruitment of p300 with NF-κB in A549 cells. Together, these studies are the first to show that M. bovis BCG-induced CCL5 secretion is dependent on the SPK/PI3K/Akt/NF-κB and p300 signaling pathway. The regulatory pathways of M. bovis BCG-induced CCL5 production can potentially be exploited therapeutically.  相似文献   

19.
Reovirus infection activates NF-kappaB, which leads to programmed cell death in cultured cells and in the murine central nervous system. However, little is known about how NF-kappaB elicits this cellular response. To identify host genes activated by NF-kappaB following reovirus infection, we used HeLa cells engineered to express a degradation-resistant mutant of IkappaBalpha (mIkappaBalpha) under the control of an inducible promoter. Induction of mIkappaBalpha inhibited the activation of NF-kappaB and blocked the expression of NF-kappaB-responsive genes. RNA extracted from infected and uninfected cells was used in high-density oligonucleotide microarrays to examine the expression of constitutively activated genes and reovirus-stimulated genes in the presence and absence of an intact NF-kappaB signaling axis. Comparison of the microarray profiles revealed that the expression of 176 genes was significantly altered in the presence of mIkappaBalpha. Of these genes, 64 were constitutive and not regulated by reovirus, and 112 were induced in response to reovirus infection. NF-kappaB-regulated genes could be grouped into four distinct gene clusters that were temporally regulated. Gene ontology analysis identified biological processes that were significantly overrepresented in the reovirus-induced genes under NF-kappaB control. These processes include the antiviral innate immune response, cell proliferation, response to DNA damage, and taxis. Comparison with previously identified NF-kappaB-dependent gene networks induced by other stimuli, including respiratory syncytial virus, Epstein-Barr virus, tumor necrosis factor alpha, and heart disease, revealed a number of common components, including CCL5/RANTES, CXCL1/GRO-alpha, TNFAIP3/A20, and interleukin-6. Together, these results suggest a genetic program for reovirus-induced apoptosis involving NF-kappaB-directed expression of cellular genes that activate death signaling pathways in infected cells.  相似文献   

20.
An inadequate innate immune response appears to contribute to the virulence of Francisella tularensis following pulmonary infection. Studies in mice suggest that this poor response results from suppression of proinflammatory cytokine production early during infection, but the mechanisms involved are not understood. PI3K is known to regulate proinflammatory cytokine expression, but its exact role (positive versus negative) is controversial. We sought to clarify the role of PI3K in regulating proinflammatory signaling and cytokine production during infection with F. tularensis live vaccine strain (LVS). In this study, we demonstrate that the induction of TNF and IL-6 expression by LVS in mouse bone marrow-derived macrophages was markedly enhanced when PI3K activity was inhibited by either of the well-known chemical inhibitors, wortmannin or LY294002. The enhanced cytokine expression was accompanied by enhanced activation of p38 MAPK and ERK1/2, both of which were critical for LVS-induced expression of TNF and IL-6. LVS-induced MAPK activation and cytokine production were TLR2- and MyD88- dependent. PI3K/Akt activation was MyD88-dependent, but was surprisingly TLR2-independent. LVS infection also rapidly induced MAPK phosphatase-1 (MKP-1) expression; PI3K and TLR2 signaling were required. Peak levels of MKP-1 correlated closely with the decline in p38 MAPK and ERK1/2 phosphorylation. These data suggest that infection by LVS restrains the TLR2-triggered proinflammatory response via parallel activation of PI3K, leading to enhanced MKP-1 expression, accelerated deactivation of MAPKs, and suppression of proinflammatory cytokine production. This TLR2-independent inhibitory pathway may be an important mechanism by which Francisella suppresses the host's innate immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号