首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dehydrins, which belong to group 2 LEA proteins, are a family of intrinsically unstructured plant proteins that accumulate during the late stages of embryogenesis and in response to abiotic stresses. We have previously reported that the OpsDHN1 gene, encoding an SK3-type acidic dehydrin protein from Opuntia streptacantha, contains an intron inserted within the sequence encoding the S-motif. Herein, we present an in silico analysis of intron sequences in dehydrin genes from mono- and dicotyledonous plants that reveals a preference for insertion within the nucleotide sequence encoding the S-motif. Sequence comparison of ten Dhn genes from Arabidopsis thaliana and the orthologous genes in Arabidopsis lyrata revealed that introns maintain considerable sequence identity and conserve the insertion pattern. Furthermore, syntenic regions were identified among eight orthologous genes of A. thaliana and A. lyrata, showing that correlated gene arrangements are conserved between these Arabidopsis species. Our study shows that most SKn-type dehydrins contain one intron that is conserved in phase and location; this intron is linked to the nucleotide sequence that encodes the S-motif.  相似文献   

2.
Regeneration in echinoderms has proved to be more amenable to study in the laboratory than the more classical vertebrate models, since the smaller genome size and the absence of multiple orthologs for different genes in echinoderms simplify the analysis of gene function during regeneration. In order to understand the role of homeobox-containing genes during arm regeneration in echinoderms, we isolated the complement of genes belonging to the Hox class that are expressed during this process in two major echinoderm groups: asteroids (Echinaster sepositus and Asterias rubens) and ophiuroids (Amphiura filiformis), both of which show an extraordinary capacity for regeneration. By exploiting the sequence conservation of the homeobox, putative orthologs of several Hox genes belonging to the anterior, medial, and posterior groups were isolated. We also report the isolation of a few Hox-like genes expressed in the same systems.  相似文献   

3.
We have characterised aSaccharomyces cerevisiae cDNA (cDNA13), originally isolated on the basis of the short half-life of the corresponding mRNA. We show here that its sequence is closely related to that of the genes encoding ribosomal proteins K37, KD4 and K5 ofSchizosaccharomyces pombe. ‘mRNA13’ also behaves like other mRNAs encoding ribosomal proteins, in that its abundance increases sharply when glucose is added to cells grown on ethanol (nutrient-up shift), and declines when cells are subjected to a mild heat-shock. Unspliced mRNA13 accumulates when cells bearing a temperature-sensitive splicing mutation are grown at the restrictive temperature. The gene(s) corresponding to cDNA13, like other ribosomal protein genes ofS. cerevisiae, thus contain an intron. Southern blot analysis indicates the presence of two separate loci related to cDNA13 in theS. cerevisiae genome. From the sequence of one of these, a complete polypeptide sequence was deduced. The first 40 amino acids are identical to those of YL6, aS. cerevisiae ribosomal protein characterised only by N-terminal protein sequence analysis. There is clear evidence within the genomic sequence for the predicted intron, and for elements similar to those that regulate expression of otherS. cerevisiae ribosomal protein genes.  相似文献   

4.
5.
A genomic library from an S 29/S 29 self-incompatible genotype of Brassica oleracea was screened with a probe carrying part of the catalytic domain of a Brassica S-receptor kinase (SRK)-like gene. Six positive phage clones with varying hybridisation intensities (K1 to K6) were purified and characterised. A 650–700 by region corresponding to the probe was excised from each clone and sequenced. DNA and predicted protein sequence comparisons based on a multiple alignment identified K5 as a pseudogene, whereas the others could encode functional proteins. K3 was found to have lost an intron from its genomic sequence. The six genes display different degrees of sequence similarity and form two distinct clusters in a dendrogram. The 98% similarity between K4 and K6, which extends across intron sequences, suggests that these might be very recently diverged alleles or daughters of a duplication. In addition, K2 showed a comparably high similarity to the probe. Clones K1, K3 and K5 cross-hybridised with an SLG 29 cDNA probe, indicating the presence of upstream receptor domains homologous to the Brassica SLG gene. This suggests that the previously reported S sequence complexity may be ascribed to a large receptor kinase gene family.  相似文献   

6.
Monogenic hypobetalipoproteinemias include three disorders: abetalipoproteinemia (ABL) and chylomicron retention disease (CMRD) with recessive transmission and familial hypobetalipoproteinemia (FHBL) with dominant transmission. We investigated three unrelated Tunisian children born from consanguineous marriages, presenting hypobetalipoproteinemia associated with chronic diarrhea and retarded growth. Proband HBL-108 had a moderate hypobetalipoproteinemia, apparently transmitted as dominant trait, suggesting the diagnosis of FHBL. However, she had no mutations in FHBL candidate genes (APOB, PCSK9 and ANGPTL3). The analysis of MTTP gene was also negative, whereas SAR1B gene resequencing showed that the patient was homozygous for a novel mutation (c.184G>A), resulting in an amino acid substitution (p.Glu62Lys), located in a conserved region of Sar1b protein. In the HBL-103 and HBL-148 probands, the severity of hypobetalipoproteinemia and its recessive transmission suggested the diagnosis of ABL. The MTTP gene resequencing showed that probands HBL-103 and HBL-148 were homozygous for a nucleotide substitution in the donor splice site of intron 9 (c.1236+2T>G) and intron 16 (c.2342+1G>A) respectively. Both mutations were predicted in silico to abolish the function of the splice site. In vitro functional assay with splicing mutation reporter MTTP minigenes showed that the intron 9 mutation caused the skipping of exon 9, while the intron 16 mutation caused a partial retention of this intron in the mature mRNA. The predicted translation products of these mRNAs are non-functional truncated proteins.  相似文献   

7.
The phenolic oxidative coupling protein (Hyp-1) with proposed activity in the biosynthesis of hypericin in Hypericum perforatum shares about 50 % sequence similarity with Bet.v.1-like/PR-10 proteins. In our previous study, we showed that this protein is not a limiting factor in hypericin biosynthesis. To ascertain the role of Hyp-1 in defense mechanisms, we have analyzed some structural features of the hyp-1 gene in 14 Hypericum species with different abilities to synthesise hypericin. We show that the hyp-1 gene possesses characteristics typical for genes encoding plant PR-10 proteins. The coding sequence of the hyp-1 gene is interrupted by a single 86- to 125-bp intron localised strictly in codon 62, which is a typical feature of the dicot PR-10 subfamily. The localisation of the intron is conserved in all 14 tested Hypericum species indicating a common evolutionary history with genes encoding PR-10 proteins. In addition, we report that the hyp-1 gene exhibits a similar response to stress conditions as the PR-10 proteins encoding genes. Following either wounding or infection by Agrobacterium tumefaciens, all analysed Hypericum species exhibited rapid and significant upregulation of hyp-1 gene expression; this was particularly observed in hypericin-producing species. On the other hand, in the presence of high levels of abscisic acid, different levels of gene expression were observed.  相似文献   

8.
9.
10.
11.
12.
W.H. Tsang  K.F. Shek  T.Y. Lee  K.L. Chow   《Genomics》2009,94(3):177-187
The embedding of one gene in another as a nested gene pair is a unique phenomenon of gene clustering in the metazoan genome. A gene-centric paralogous genomic sequence comparison strategy was used in this study to align these paralogous nested pairs, Mab21l2-Lrba and Mab21l1-Nbea, to identify the associated paralogous non-coding elements (pNEs) they shared. A majority of these pNEs in the Mab21l2-Lrba locus display tissue-specific enhancer activities recapitulating the expression profiles of Mab21l2 and Mab21l1. Since these enhancers are spread into the introns of Lrba, dissociation of the two genes will likely disrupt the function of at least one of them. Phylogenetic analysis of this complex locus in different species suggests that Mab21 was probably locked in the Lrba/Nbea intron in the ancestral metazoan species, in which the cis-elements uncovered in this study may act as a selective force to prevent the dissociation of this gene pair in vertebrates.  相似文献   

13.

Background

The homologues of human disease genes are expected to contribute to better understanding of physiological and pathogenic processes. We made use of the present availability of vertebrate genomic sequences, and we have conducted the most comprehensive comparative genomic analysis of the prion protein gene PRNP and its homologues, shadow of prion protein gene SPRN and doppel gene PRND, and prion testis-specific gene PRNT so far.

Results

While the SPRN and PRNP homologues are present in all vertebrates, PRND is known in tetrapods, and PRNT is present in primates. PRNT could be viewed as a TE-associated gene. Using human as the base sequence for genomic sequence comparisons (VISTA), we annotated numerous potential cis-elements. The conserved regions in SPRNs harbour the potential Sp1 sites in promoters (mammals, birds), C-rich intron splicing enhancers and PTB intron splicing silencers in introns (mammals, birds), and hsa-miR-34a sites in 3'-UTRs (eutherians). We showed the conserved PRNP upstream regions, which may be potential enhancers or silencers (primates, dog). In the PRNP 3'-UTRs, there are conserved cytoplasmic polyadenylation element sites (mammals, birds). The PRND core promoters include highly conserved CCAAT, CArG and TATA boxes (mammals). We deduced 42 new protein primary structures, and performed the first phylogenetic analysis of all vertebrate prion genes. Using the protein alignment which included 122 sequences, we constructed the neighbour-joining tree which showed four major clusters, including shadoos, shadoo2s and prion protein-likes (cluster 1), fish prion proteins (cluster 2), tetrapode prion proteins (cluster 3) and doppels (cluster 4). We showed that the entire prion protein conformationally plastic region is well conserved between eutherian prion proteins and shadoos (18–25% identity and 28–34% similarity), and there could be a potential structural compatibility between shadoos and the left-handed parallel beta-helical fold.

Conclusion

It is likely that the conserved genomic elements identified in this analysis represent bona fide cis-elements. However, this idea needs to be confirmed by functional assays in transgenic systems.  相似文献   

14.
In an attempt to insert the modified castor bean catalase intron (mCBC intron) into the coding sequence of the Cre recombinase gene, we found that the mCBC intron was not completely spliced from the resulting iCre gene in tobacco and Arabidopsis. Sequencing and allele-specific PCR analyses indicated that six nucleotides (UUACAG) at the 3′ terminus of the mCBC intron were retained in the mature mRNA of the iCre gene. Moreover, the mCBC intron was incompletely spliced from the Gus gene in pCAMBIA vectors. A mutational analysis of the mCBC intron demonstrated that the incomplete splicing was due to an artificial 3′ splice site introduced by the insertion of an adenine, which created a TAG (stop) codon near the 3′ splice site of the original CBC intron. Deletion of the inserted adenine or the six nucleotides that were retained from the mCBC intron led to the complete removal of the intron from the resulting iCre2 and iCre3 genes. Thus, in this study, we not only characterized the incomplete splicing event of the mCBC intron in tobacco and Arabidopsis, but also reported the construction of two intron-containing Cre recombinase genes that are useful for plant biotechnology applications.  相似文献   

15.
16.
17.
REC114 is one of 10 genes known to be required for the initiation of meiotic recombination in Saccharomyces cerevisiae. It is transcribed only in meiosis, and our previous sequence analysis suggested the presence of an intron in the 3′ end of the gene. Hypotheses in the literature have suggested, because of its unusual location, either that the putative intron in REC114 is likely to be necessary for expression, or that there may actually be no intron present. This work demonstrates that REC114 does have an intron and is one of only three genes in yeast with introns located in the 3′ end. Furthermore, the 3′ splice site utilized in REC114 is a very rare AAG sequence; only three other genes in yeast use this nonconsensus sequence. The splicing of REC114 does not require MER1, a gene known to be involved in meiosis-specific RNA processing. In fact, an intronless copy of REC114 can complement a null rec114 mutation. Thus, it does not appear that the intron is essential for expression of REC114. Although the intron is not absolutely required for meiotic function, it is conserved in evolution; two other species of yeast contain an intron at the same location in their REC114 genes.  相似文献   

18.
19.

Background

Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP) comprises four distinct families: expansin A (EXPA), expansin B (EXPB), expansin-like A (EXLA) and expansin-like B (EXLB). There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera) genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far.

Methodology/Principal Findings

We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon–intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa), compared to those from Arabidopsis thaliana and rice (Oryza sativa). We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering.

Conclusion

Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the functional characterization of grapevine gene families by combining phylogenetic analysis with global gene expression profiling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号