首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytostatic colchicine is widely used in the treatment of Familial Mediterranean fever, but it has several side effects. For finding new, more effective drugs with higher affinity and diminishside effects we carried out virtual screening of potential inhibitors of the main target of colchicine, the polymerization of tubulin by evaluating affinity 25745 compounds, structurally related to the colchicine. We have identified 11 commercially available compounds with higher affinity to tubulin. Compounds with highest binding scores include trimethoxybenzene and its derivatives; these compounds bind to the same site in similar orientation. Information provided can form the basis for design of new cytostatics.  相似文献   

2.
Microtubule cytoskeletons are involved in many essential functions throughout the life cycle of cells, including transport of materials into cells, cell movement, and proper progression of cell division. Small compounds that can bind at the colchicine site of tubulin have drawn great attention because these agents can suppress or inhibit microtubule dynamics and tubulin polymerization. To find novel tubulin polymerization inhibitors as anti-mitotic agents, we performed a virtual screening study of the colchicine binding site on tubulin. Novel tubulin inhibitors were identified and characterized by their inhibitory activities on tubulin polymerization in vitro. The structural basis for the interaction of novel inhibitors with tubulin was investigated by molecular modeling, and we have proposed binding models for these hit compounds with tubulin. The proposed docking models were very similar to the binding pattern of colchicine or podophyllotoxin with tubulin. These new hit compound derivatives exerted growth inhibitory effects on the HL60 cell lines tested and exhibited strong cell cycle arrest at G2/M phase. Furthermore, these compounds induced apoptosis after cell cycle arrest. In this study, we show that the validated derivatives of compound 11 could serve as potent lead compounds for designing novel anti-cancer agents that target microtubules.  相似文献   

3.
Microtubule binding and tubulin assembly promotion by a series of conformationally restricted paclitaxel (PTX) derivatives was investigated. In these derivatives, the C-4 acetate of the taxane is tethered to the C-3' phenyl at ortho and meta positions with different length linkers. The apparent affinity of these derivatives for GMPCPP-stabilized microtubules was assessed by a competition assay, and their influence on microtubule polymerization was evaluated by measuring the critical concentration of GDP-tubulin in the presence of the respective molecule. In general, taxane derivatives with higher apparent affinity for microtubules induced tubulin assembly more efficiently. Among the derivatives, molecules with the shortest tether display the strongest affinity for microtubules. These derivatives exhibited enhanced microtubule stabilization properties and efficiently induced GDP-tubulin assembly into microtubules at low temperature of 12 degrees C and in the absence of Mg2+ ions in 0.1 M PIPES. Based on molecular dynamics simulations, we propose that the enhanced ability to assemble microtubules by these taxane derivatives is linked to their ability to effectively shape the conformation of the M-loop of tubulin for cross-protofilament interaction.  相似文献   

4.
Pyrimidinyl pyrazole derivatives 1-4, prepared as a new scaffold of an anti-tumor agent, showed antiproliferative activity against human lung cancer cell lines and inhibited tubulin polymerization. Furthermore, it was found that compound 2 bound at the colchicine site on tubulin, but the tubulin binding pattern was different from that of colchicine. Here, we describe the synthesis of the derivatives and the differences of the action mechanism on tubulin polymerization inhibition between compound 2 and colchicine.  相似文献   

5.
Microtubule dynamic instability is tightly regulated by coordinated action of stabilizing and destabilizing microtubule associated proteins. Among the stabilizing proteins, tau plays a pivotal role in both physiological and pathological processes. Nevertheless, the detailed mechanism of tau-tubulin interaction is still subject to controversy. In this report, we studied for the first time tau binding to tubulin by a direct thermodynamic method in the absence of any tubulin polymerization cofactors that could influence this process. Isothermal titration calorimetry enabled us to evidence two types of tau-tubulin binding modes: one corresponding to a high affinity binding site with a tau:tubulin stoichiometry of 0.2 and the other one to a low affinity binding site with a stoichiometry of 0.8. The same stoichiometries were obtained at all temperatures tested (10-37°C), indicating that the mechanism of interaction does not depend on the type of tubulin polymer triggered upon tau binding. These findings allowed us to get new insights into the topology of tau on microtubules.  相似文献   

6.
GDP inhibits paclitaxel-induced tubulin assembly without GTP when the tubulin bears GDP in the exchangeable site (E-site). Initially, we thought inhibition was mediated through the E-site, since small amounts of GTP or Mg2+, which favors GTP binding to the E-site, reduced inhibition by GDP. We thought trace GTP released from the nonexchangeable site (N-site) by tubulin denaturation was required for polymer nucleation, but microtubule length was unaffected by GDP. Further, enhancing polymer nucleation reduced inhibition by GDP. Other mechanisms involving the E-site were eliminated experimentally. Upon finding that ATP weakly inhibited paclitaxel-induced assembly, we concluded that another ligand binding site was responsible for these inhibitory effects, and we found that GDP was not binding at the taxoid, colchicine, or vinca sites. There may therefore be a lower affinity site on tubulin to which GDP can bind distinct from the E- and N-sites, possibly on α-tubulin, based on molecular modeling studies.  相似文献   

7.
Tubulin was first treated with alkaline phosphatase-agarose to vacate the exchangeable nucleotide binding site and then tested for manganese binding sites by Mn(II) EPR. Buttlaire et al. ((1980) J. Biol. Chem. 255, 2164-2168) have shown that high affinity manganese binding occurs at a single site normally occupied by magnesium. We report that the number of high affinity manganese binding sites per mol of tubulin depends on the number of occupied exchangeable nucleotide binding sites. Thus, removal of nucleotides results in a loss of high affinity manganese binding sites. The EPR spectra of manganese bound to tubulin and to GTP are found to be qualitatively similar. These data indicate that high affinity manganese binding is the result of the formation of a metal-nucleotide complex at the exchangeable nucleotide binding site. In addition it was found that zinc, cobalt, and magnesium bind with approximately equal affinity to this site whereas calcium binds only weakly.  相似文献   

8.
Twenty novel 1,2,3-triazole noscapine derivatives were synthesized starting from noscapine by consecutive N-demethylation, reduction of lactone ring, N-propargylation and Huisgen 1,3-dipolar cycloaddition reaction. In order to select the most promising molecules to subject to further biophysical and biological evaluation, a molecular docking analysis round was performed using noscapine as reference compound. The molecules featuring docking predicted binding affinity better than that of noscapine were then subjected to MTT assay against MCF7 cell line. The obtained results disclosed that all the selected triazole derivatives exhibited a remarkably lower cell viability compared to noscapine in the range of 20 μM in 48 h. In an attempt to correlate the biological activity with the ability to bind tubulin, the surface plasmon resonance (SPR) assay was employed. Compounds 8a, 8h, 9c, 9f and 9j were able to bind tubulin with affinity constant values in the nanomolar range and higher if compared to noscapine. Integrating computational predictions and experimental evaluation, two promising compounds (8h and 9c) were identified, whose relevant cytotoxicity was supposed to be correlated with tubulin binding affinity. These findings shed lights onto structural modifications of noscapine toward the identification of more potent cytotoxic agents targeting tubulin.  相似文献   

9.
L Wilson  K M Creswell  D Chin 《Biochemistry》1975,14(26):5586-5592
Tritium-labeled viblastine, specific activity 107 Ci/mol, was prepared by acetylation of desacetylvinblastine with [3H]acetic anhydride, and has been employed in a study of vinblastine binding to tubulin. There are two high affinity vinblastine-binding sites per mole of embryonic chick brain tubulin (KA = 3-5 X 10(5) l./mol). Binding to these sites was rapid, and relatively independent of temperature between 37 and 0degreeC. Vincristin sulfate and desacetylvinblastine sulfate, two other active vinca alkaloid derivatives, competitively inhibited the binding of vinblastine. The inhibition constant for vincristine was 1.7 X 10(-5) M; and for desacetylvinblastine, 2 X 10(-5) M. The vinblastine binding activity of tubulin decayed upon aging, but this property was not studied in detail. Vinblastine did not depolymerize stable sea urchin sperm tail outer doublet microtubules, nor did it bind to these microtubules. However, tubulin solubilized from the B subfiber of the outer doublet microtubules possessed the two high affinity binding sites (KA = 1-3 X 105 l./mol). These data suggest that vinblastine destroys microtubules in cells primarily by inhibition of microtubule polymerization, and does not directly destroy preformed microtubules.  相似文献   

10.
Microtubule (MT) binding accelerates the rate of ATP hydrolysis in kinesin. To understand the underlying mechanism, using charged‐to‐alanine mutational analysis, we identified two independent sites in tubulin, which are critical for kinesin motility, namely, a cluster of negatively charged residues spanning the helix 11–12 (H11–12) loop and H12 of α‐tubulin, and the negatively charged residues in H12 of β‐tubulin. Mutation in the α‐tubulin‐binding site results in a deceleration of ATP hydrolysis (kcat), whereas mutation in the β‐tubulin‐binding site lowers the affinity for MTs (K0.5MT). The residue E415 in α‐tubulin seems to be important for coupling MT binding and ATPase activation, because the mutation at this site results in a drastic reduction in the overall rate of ATP hydrolysis, largely due to a deceleration in the reaction of ADP release. Our results suggest that kinesin binding at a region containing α‐E415 could transmit a signal to the kinesin nucleotide pocket, triggering its conformational change and leading to the release of ADP.  相似文献   

11.
Tubulin, the major structural component of the microtubules, participates actively in mitotic spindle formation and chromosomal organization during cell division. Tubulin is the major target for a variety of anti-mitotic drugs. Some of the drugs, such as Vinca alkaloids and taxol, are routinely used for cancer chemotherapy. It is unfortunate that our knowledge of the binding sites on tubulin of these drugs is limited because of lack of a useful and appropriate tool. The photoaffinity labeling approach is the major technique available at present to detect the binding sites of drugs on tubulin. This method, however, has several limitations. First, only part of the binding site can be identified, namely, the residues which react with the photoaffinity label. Second, there are regions of tubulin which are not at the binding site but are affected by the binding of the drug; these regions can not be detected by the photoaffinity labeling approach. The third, and perhaps most serious, limitation is that the traditional approach can detect areas which have nothing to do with the binding of the ligand but which are within a certain distance of the binding site, that distance being less than the length of the photoreactive moiety attached to the ligand. There has been a great deal of controversy on the localization of the binding site of colchicine on tubulin, with some reports suggesting that the binding site is on alpha and some supporting a binding site on beta. Colchicine also has significant effects on tubulin conformation, but the regions which are affected have not been identified. We have attempted here to address these questions by a novel "footprinting" method by which the drug-binding sites and as well as the domain of tubulin affected by drug-induced conformational changes could be determined. Here, we report for the first time that the interaction of the B-ring of colchicine with the alpha-subunit affects a domain of tubulin which appears to be far from its binding site. This domain includes the cysteine residues at positions 295, 305, 315 and 316 on alpha-tubulin; these residues are located well away from the alpha/beta interface where colchicine appears to bind. This is correlated with the stabilizing effect of colchicine on the tubulin molecule. Furthermore, we also found that the B-ring of colchicine plays a major role in the stability of tubulin while the A and the C-rings have little effect on it. Our results therefore, support a model whereby colchicine binds at the alpha/beta interface of tubulin with the B-ring on the alpha-subunit and the A and the C-rings on the beta-subunit.  相似文献   

12.
Isocolchicine is a structurally related isomer of colchicine altered in the methoxytropone C ring. In spite of virtual structural homology of colchicine and isocolchicine, isocolchicine is commonly believed to be inactive in binding to tubulin and inhibiting microtubule assembly. We have found that isocolchicine does indeed bind to the colchicine site on tubulin, as demonstrated by its ability to competitively inhibit [3H]colchicine binding to tubulin with a KI approximately 400 microM. Isocolchicine inhibits tubulin assembly into microtubules with an I50 of about 1 mM, but the affinity of isocolchicine for the colchicine receptor site, 5.5 +/- 0.9 x 10(3) M-1 at 23 degrees C, is much less (approximately 500-fold) than that of colchicine. Unlike colchicine, isocolchicine binds rapidly, and the absorption and fluorescence properties of the complex are only modestly altered compared to free ligand. It is proposed that the binding of isocolchicine to tubulin may be rationalized either in terms of conformational states of colchicinoids when liganded to tubulin or by the structural requirements for C-10 substituents for high affinity binding to the colchicine receptor.  相似文献   

13.
Anion-induced increases in the affinity of colcemid binding to tubulin   总被引:1,自引:0,他引:1  
Colcemid binds tubulin rapidly and reversibly in contrast to colchicine which binds tubulin relatively slowly and essentially irreversibly. At 37 degrees C the association rate constant for colcemid binding is 1.88 X 10(6) M-1 h-1, about 10 times higher than that for colchicine; this is reflected in the activation energies for binding which are 51.4 kJ/mol for colcemid and 84.8 kJ/mol for colchicine. Scatchard analysis indicates two binding sites on tubulin having different affinities for colcemid. The high-affinity site (Ka = 0.7 X 10(5) M-1 at 37 degrees C) is sensitive to temperature and binds both colchicine and colcemid and hence they are mutually competitive inhibitors. The low-affinity site (Kb = 1.2 X 10(4) M-1) is rather insensitive to temperature and binds only colcemid. Like colchicine, 0.6 mol of colcemid are bound/mol of tubulin dimer (at the high-affinity site) and the reaction is entropy driven (163 J K-1 mol-1). Similar to colchicine, colcemid binding to tubulin is stimulated by certain anions (viz. sulfate and tartrate) but by a different mechanism. Colcemid binding affinity at the lower-affinity site of tubulin is increased in the presence of ammonium sulfate. Interestingly, the lower-affinity site on tubulin for colcemid, even when converted to higher affinity in presence of ammonium sulfate, is not recognized by colchicine. We conclude that tubulin possesses two binding sites, one of which specifically recognized the groups present on the B-ring of colchicine molecule and is effected by the ammonium sulfate, whereas the higher-affinity site, which could accommodate both colchicine and colcemid, possibly recognized the A and C ring of colchicine.  相似文献   

14.
Interactions of bisANS and ANS to tubulin in the presence and absence of GTP were investigated, and the binding and thermodynamic parameters were determined using isothermal titration calorimetry. Like bisANS binding to tubulin, we observed a large number of lower affinity ANS binding sites (N1 = 1.3, K1 = 3.7 x 10(5) M(-1), N2 = 10.5, K2 = 7 x 10(4)/M(-1)) in addition to 1-2 higher affinity sites. Although the presence of GTP lowers the bisANS binding to both higher and lower affinity sites (N1 = 4.3, N2 = 11.7 in absence and N1 = 1.8, N2 = 3.6 in presence of GTP), the stoichiometries of both higher and lower affinity sites of ANS remain unaffected in the presence of GTP. BisANS-induced structural changes on tubulin were studied using site-specific proteolysis with trypsin and chymotrypsin. Digestion of both alpha and beta tubulin with trypsin and chymotrypsin, respectively, has been found to be very specific in presence of GTP. GTP has dramatic effects on lowering the extent of nonspecific digestion of beta tubulin with trypsin and stabilizing the intermediate bands produced from both alpha and beta. BisANS-treated tubulin is more susceptible to both trypsin and chymotrypsin digestion. At higher bisANS concentration (>20 microM) both alpha and beta tubulins are almost totally digested with enzymes, indicating bisANS-induced unfolding or destabilization of tubulin structure. Again, the addition of GTP has remarkable effect on lowering the bisANS-induced enhanced digestion of tubulin as well as stabilizing effect on intermediate bands. These results of isothermal titration calorimetry, proteolysis and the DTNB-kinetics data clearly established that the addition of GTP makes tubulin compact and rigid and hence the GTP-induced stabilization of tubulin structure. No such destabilization of tubulin structure has been noticed with ANS, although, like bisANS, ANS possesses a large number of lower affinity binding sites. On the basis of these results, we propose that the unique structure of bisANS, which in absence of GTP can bind tubulin as a bifunctional ligand (through its two ANS moieties), is responsible for the structural changes of tubulin.  相似文献   

15.
A new bioactive photoaffinity probe KPU-252-B1 (4) possessing a biotin tag on the oxazole ring of a potent plinabulin derivative KPU-244 (2) was synthesized via the CuI-catalyzed Huisgen’s cycloaddition reaction to understand the precise binding mode of the diketopiperazine-based anti-microtubule agent plinabulin on tubulin. Probe 4 showed significant binding affinity toward tubulin and cytotoxicity against an HT-29 cells. A photoaffinity labeling study suggested that probe 4 specifically recognizes tubulin at a binding site that binds plinabulin or colchicine, most likely near or at the colchicine binding site, which is located at the interfacial region formed by ??-and ??-tubulin association. The results also demonstrated that probe 4 may serve as a useful plinabulin chemical probe to investigate the molecular mechanism by which anti-microtubule diketopiperazine derivatives operate.  相似文献   

16.
Cryptophycin-52 (Cp-52) is potentially the most potent anticancer drug known, with IC50 values in the low picomolar range, but its binding site on tubulin and mechanism of action are unknown. Here, we have determined the binding site of Cp-52, and its parent compound, cryptophycin-1, on HeLa tubulin, to a resolution of 3.3 Å and 3.4 Å, respectively, by cryo-EM and characterized this binding further by molecular dynamics simulations. The binding site was determined to be located at the tubulin interdimer interface and partially overlap that of maytansine, another cytotoxic tubulin inhibitor. Binding induces curvature both within and between tubulin dimers that is incompatible with the microtubule lattice. Conformational changes occur in both α-tubulin and β-tubulin, particularly in helices H8 and H10, with distinct differences between α and β monomers and between Cp-52-bound and cryptophycin-1-bound tubulin. From these results, we have determined: (i) the mechanism of action of inhibition of both microtubule polymerization and depolymerization, (ii) how the affinity of Cp-52 for tubulin may be enhanced, and (iii) where linkers for targeted delivery can be optimally attached to this molecule.  相似文献   

17.
R Donato 《Cell calcium》1987,8(4):283-297
S-100 was shown to regulate the in vitro assembly of brain microtubule proteins (MTPs) in a Ca2+-mediated way by acting on both the nucleation and the elongation of microtubules (MTs). Here data will be shown suggesting that S-100 binds to tubulin. The binding is time-, temperature-, Ca2+-, and pH-dependent, and saturable with respect to S-100. At pH 6.75, the saturation curve is biphasic, displaying a high affinity component (dissociation constant, Kd1, approximately 0.1 microM) and a low affinity component (Kd2 approximately 3.8 microM). At pH 6.75, as the free Ca2+ concentration raises from 0 to 100 microM, the overall binding capacity increases from 0.065 to 0.66 mol S-100/mol tubulin dimer. This finding, together with the observation that the S-100 effect on MTP assembly is Ca2+-dependent at that pH, suggests that the S-100-induced inhibition of MTP assembly depends on S-100 binding to the low affinity sites on the tubulin molecule. The S-100 binding to tubulin is pH-dependent; as the pH raises from 6.75 to 8.3, both binding components are affected, the major changes consisting of an increase in the binding capacity and a decrease in the overall affinity. Moreover, as the pH raises, Ca2+ is no longer required for S-100 to bind to tubulin. S-100 also interacts with a component of whole MTPs (probably tubulin, on the basis of the above results). No S-100 binding to microtubule-associated proteins (MAPs) could be evidenced by the techniques employed in this study. On the contrary, some competition between S-100 and MAPs for binding sites or tubulin seems to occur.  相似文献   

18.
Interaction of steroids with the nuclear envelope   总被引:2,自引:0,他引:2  
Three approaches have been taken to determine the molecular mechanism by which steroid hormones traverse the nuclear envelope on their way to the genome. The first approach involved characterization of steroid binding to nuclear envelope preparations. We have characterized androgen binding to nuclear envelopes isolated from the rat ventral prostate, the rat liver, and androgen-responsive and androgen-unresponsive cell lines of the Shionogi mouse mammary carcinoma and glucocorticoid binding to rat liver. Relatively high affinity binding sites for steroids have been identified on nuclear envelopes. Importantly, the number and specificity of the sites correlates with the responsiveness of the tissue to the steroid. In the second approach, we have undertaken to identify the steroid binding site directly. As the characteristics of the rat ventral prostate site resembled those of the nuclear androgen receptor, we have begun purifying that receptor and have found fast protein liquid chromatography to be very effective. By affinity labelling studies, the dexamethasone binding site on the rat liver nuclear envelope has been identified as a peptide of molecular weight of approximately 90,000. The third approach we have used is to identify androgen-dependent peptides in nuclear envelope preparations. In both the rat ventral prostate and an androgen-responsive cell line of the Shionogi mouse mammary carcinoma, we have identified abundant androgen-dependent peptides. The relationship of these peptides to the binding sites identified by the first two approaches and their role in steroid transport is being investigated.  相似文献   

19.
Thiabendazole, 2-(4'-thiazolyl)benzimidazole, at 80 micrometer completely inhibits mitosis in hyphae of Aspergillus nidulans, growing in liquid culture. DNA and RNA synthesis and mycelial growth are only partially inhibited at this concentration. Binding studies with cell-free mycelial extracts from Penicillium expansum showed that thiabendazole competitively inhibits [14C]carbendazim binding to tubulin, which suggests that the antimitotic activity of thiabendazole is based on interference with microtubule assembly. Tubulin from a thiabendazole-resistant and carbendazim-highly sensitive mutant of P. expansum has a lower affinity to thiabendazole and a higher affinity to carbendazim than tubulin from a wide-type strain. This indicates that in this mutant the structure of the binding site is affected. The data presented suggest that several sites of both the tubulin and ligand molecule are involved in the binding of benzimidazole compounds to fungal tubulin.  相似文献   

20.
Vinblastine is an antimitotic agent that has been used extensively in cancer chemotherapy. The biological effects of the drug are believed to be the result of its interaction with tubulin, the major component of cellular microtubules. Fluorescence spectroscopy is a powerful and versatile technique for studying drug-tubulin interactions, but it rarely has been applied to studies involving vinca alkaloids. We have prepared a new fluorescent derivative of vinblastine designed to retain high affinity for tubulin while possessing a fluorophore that absorbs and emits visible light. A coumarin derivative of vinblastine, 17-deacetyl-O-(3-carbonylamino-7-diethylaminocoumarin) vinblastine (F-VLB), was prepared by reaction of 17-deacetylvinblastine with 7-diethylaminocoumarin-3-carbonyl azide. F-VLB was a potent inhibitor of in vitro microtubule assembly (IC(50) = 0.5 microM). F-VLB binding to tubulin was inhibited by vinblastine. Tubulin binding induced an increase in the F-VLB emission intensity and shifted the emission maximum to higher energy (from 500 to 480 nm). The Stokes shift of tubulin-bound F-VLB was about the same as the Stokes shift of the molecule in ethanol, indicating that the tubulin-bound fluorophore is probably on the exterior of the vinblastine binding site. Unlike vinblastine, F-VLB failed to induce self-assembly of tubulin that could be detected by light scattering or electron microscopy, although some self-association could be detected by analytical ultracentrifugation. Equilibrium binding parameters were quantitatively determined by monitoring the change in fluorescence anisotropy of F-VLB upon tubulin binding. The apparent equilibrium constant for F-VLB binding to tubulin [K(a)(app) = (7.7 +/- 0.5) x 10(4) M(-1) at 25 degrees C] was identical to the equilibrium constant for vinblastine binding to 2 microM tubulin (K(1)) measured under similar buffer and temperature conditions using ultracentrifugation [Vulevic, B., Lobert, S., and Correia, J. J. (1997) Biochemistry 36, 12828-12835]. Binding allocolchicine to tubulin did not significantly affect F-VLB's affinity for the protein [K(a)(app) = (9.1 +/- 0.4) x 10(4) M(-1) at 25 degrees C]. Analysis of the steady-state emission spectra yielded a distance between the colchicine and vinca binding sites on tubulin of approximately 40 A. F-VLB bound to paclitaxel- and glutaraldehyde-stabilized microtubules, with approximately equal affinity. We conclude that F-VLB can be used to obtain information about the vinblastine binding site on tubulin under equilibrium conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号