首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 589 毫秒
1.
1. The effects of raising cockroaches, Leucophaea maderae, in non-24 h light cycles on circadian rhythms in adults were examined. The average period (tau) of freerunning rhythms of locomotor activity of animals exposed to LD 11:11 (T22) during post-embryonic development was significantly shorter (tau = 22.8 +/- 0.47 SD, n = 85) than that of animals raised in LD 12:12 (T24) (tau = 23.7 +/- 0.20 h, n = 142), while animals raised in LD 13:13 (T26) had significantly longer periods (tau = 24.3 +/- 0.21 h, n = 65). Animals raised in constant darkness (DD) had a significantly shorter period (tau = 23.5 +/- 0.21 h, n = 13) than siblings raised in constant light (LL) (tau = 24.0 +/- 0.15 h, n = 10). 2. The differences in tau between animals raised in T22 and T24 were found to be stable in DD for at least 7 months and could not be reversed by exposing animals to LD 12:12 or LD 6:18. 3. Animals raised in either T24 or DD and then exposed as adults to T22 exhibited average freerunning periods that were not different from animals not exposed to T22. 4. Measurement of freerunning periods at different temperatures of animals raised in T22, T24, or T26 showed that the temperature compensation of tau was not affected by the developmental light cycle. These results indicate that the lighting conditions during post-embryonic development can permanently alter the freerunning period of the circadian system in the cockroach, but do not affect its temperature compensation.  相似文献   

2.
1. We used published data to investigate the combined influence of egg size and incubation temperature on embryonic development time for a broad assortment of aquatic insects at four different incubation temperatures (10, 15, 20 and 25 °C).
2. Embryonic development time (EDT) was positively correlated with egg size at each of the four temperatures, but with different relationships for univoltine and multivoltine aquatic insects. The relationships of embryonic development time to egg size expressed in degree-days did not significantly differ in slope ( P >0.50) or intercept ( P >0.05) for either univoltine or multivoltine aquatic insects at each of the four temperatures.
3. The relationship of embryonic development time (degree-days) to egg mass in multivoltine aquatic insects (EDT=885×0.19, P <0.0001, r 2=0.48) is similar in slope and intercept to that for other oviparous animals (i.e., zooplankton, fish, amphibians and reptiles), and to the relationship of embryonic development time to neonate mass in mammals. Univoltine species on average require 3–5 times longer to develop (EDT=14190×0.29, P <0.001, r 2=0.29) than most other animals of equivalent egg mass, but the relationship of embryonic development time to egg mass is similar in slope to that of most other animals. Together, these relationships provide a basis for evaluating differences in embryonic development time among aquatic insects.  相似文献   

3.
Differences in genetic structure of samples of monarch butterflies caught at different times of day have been reported previously. This paper compares differences in allele and heterozygote frequencies at thePgi locus between animals flying early and those flying late in outdoor flight cages and between animals able and animals unable to fly at a constant low temperature. There were consistent effects across a number of tests and in comparisons with field data, especially in males. Animals with the Mallele were more likely to be able to fly at low temperatures, to become active early in outdoor flight cages, and to be caught early in the field. Also, differences were observed between males and females in the effect of allele on flight activity.  相似文献   

4.
I evaluated the effect of incubation temperature on phenotypes of the veiled chameleon, Chamaeleo calyptratus. I chose this species for study because its large clutch size (30-40 eggs or more) allows replication within clutches both within and among experimental treatments. The major research objectives were (1) to assess the effect of constant low, moderate, and high temperatures on embryonic development, (2) to determine whether the best incubation temperature for embryonic development also produced the "best" hatchlings, and (3) to determine how a change in incubation temperature during mid-development would affect phenotype. To meet these objectives, I established five experimental temperature regimes and determined egg survival and incubation length and measured body size and shape, selected body temperatures, and locomotory performance of lizards at regular intervals from hatching to 90 d, or just before sexual maturity. Incubation temperature affected the length of incubation, egg survival, and body mass, but did not affect sprint speed or selected body temperature although selected body temperature affected growth in mass independently of treatment and clutch. Incubation at moderate temperatures provided the best conditions for both embryonic and post-hatching development. The highest incubation temperatures were disruptive to development; eggs had high mortality, developmental rate was low, and hatchlings grew slowly. Changes in temperature during incubation increased the among-clutch variance in incubation length relative to that of constant temperature treatments. J. Exp. Zool. 309A:435-446, 2008. (c) 2008 Wiley-Liss, Inc.  相似文献   

5.
The minnow (Phoxinus phoxinus) was raised up to the stage of swim bladder inflation at temperatures between 10 degrees C and 25 degrees C, and the time of development significantly decreased at higher temperatures. Accordingly, initiation of cardiac activity was observed at day 2 in 25 degrees C animals and at day 4 in 12.5 degrees C animals. Only a minor increase in body mass was observed during the incubation period, and, at the end of the incubation period, animals raised at 25 degrees C did not have a significantly lower body mass compared with animals raised at 15 degrees C. Metabolic activity, determined as the rate of oxygen consumption of a larva, increased from 3.3 to 19.5 nmol/h during development at 15 degrees C and from 5.6 to 47.6 nmol/h during development at 25 degrees C. Heart rate showed a clear correlation to developmental stage as well as to developmental temperature, but at the onset of cardiac activity, diastolic ventricular volume and also stroke volume were higher at the lower temperatures. Furthermore, stroke volume increased with development, except for the group incubated at 12.5 degrees C, in which stroke volume decreased with development. Initial cardiac output showed no correlation to incubation temperature. Although metabolic activity increased severalfold during development from egg to the stage of swim bladder inflation at 15 degrees C and at 25 degrees C, weight-specific cardiac output increased only by approximately 40% with proceeding development. At 12.5 degrees C, cardiac output remained almost constant until opening of the swim bladder. The data support the notion that oxygen transport is not the major function of the circulatory system at this stage of development. The changes in heart rate with temperature appear to be due to the intrinsic properties of the pacemaker; there was no indication for a regulated response.  相似文献   

6.
温度对甜菜夜蛾飞行能力的影响   总被引:5,自引:0,他引:5  
温度对甜菜夜蛾飞行能力有显著的影响(P<0.05)。在16~32℃内,成虫均能进行正常的飞行活动。24℃下的成虫飞行能力最强,在15 h的吊飞飞行中,成虫飞行距离最远(37.14 km)、飞行速度最快(0.87 m/s)、飞行时间最长(11.73 h)。温度低于20℃或高于28℃时,其飞行能力均显著降低。甜菜夜蛾在不同温度下飞行时对主要能源物质(甘油三酯)的利用效率不同。在较适宜的温度下,尽管成虫飞行消耗的甘油三酯较多,但单位飞行距离所消耗的甘油三酯却较少,即利用效率较高,表明成虫飞行能源物质利用效率的不同是导致其在不同温度下飞行能力产生差异的主要原因之一。  相似文献   

7.
Berried females of Macrobrachium rosenbergii (De Man) from Anuenue stock were allowed to incubate their eggs at three different temperatures (25,29, and 31°C). The newborn larvae were reared in the laboratory from hatch through completion of the metamorphosis to postlarva in 30 combinations of temperature (22–34° C) and salinity (0–34 ppt). Survival and stage attainment rates were observed. Multiple linear regression analysis and response surface methodology were used to estimate the response of larvae to these different temperature and salinity combinations. Dissimilarities in the response of zoeae from the three egg incubation temperatures were found. Larvae from eggs incubated at 25° C during embryonic development showed tolerance to a broader range of temperature and salinity conditions than those incubated at 29 or 31 °C. The response also changed with the ontogeny of the larvae. The zoeae are considered to have undergone acclimation during embryonic development, thus eliciting a different response.  相似文献   

8.
Ashmore GM  Janzen FJ 《Oecologia》2003,134(2):182-188
Temperatures experienced during embryonic development elicit well-documented phenotypic variation in embryonic and neonatal animals. Most research, however, has only considered the effects of constant temperatures, even though developmental temperatures in natural settings fluctuate considerably on a daily and seasonal basis. A laboratory study of 15 clutches of smooth softshell turtles (Apalone mutica) was conducted to explicitly examine the influence of thermal variance on phenotypic variation. Holding mean temperature constant and eliminating substrate moisture effects permitted a clear assessment of the impact of thermal variance on hatching success, incubation length, hatchling body size, swimming speed, and righting time. Incubation length and swimming speed varied significantly among temperature treatments. Both traits tended to increase with increasing thermal variance during embryonic development. Clutch significantly affected all traits examined, except righting time, even after accounting for the effects of initial egg mass. These results highlight the importance of accounting for the impact of both thermal mean and variance on phenotypic variation. The findings also strengthen the increasing recognition of maternal clutch effects as critical factors influencing phenotypic variation in neonatal animals.  相似文献   

9.
Performance curves of physiological rates are not fixed, and determining the extent to which thermal performance curves can change in response to environmental signals is essential to understand the effect of climate variability on populations. The aim of this study was to determine whether and how temperatures experienced during early embryonic development affect thermal performance curves of later life history stages in the frog Limnodynastes peronii. We tested the hypotheses that a) the embryonic environment affects mean trait values only; b) temperature at which performance of tadpoles is maximal shifts with egg incubation temperatures so that performance is maximised at the incubation temperatures, and c) incubation temperatures modulate the capacity for reversible acclimation in tadpoles. Growth rates were greater in warm (25°C) compared to cold (15°C) acclimated (6 weeks) tadpoles regardless of egg developmental temperatures (15°C or 25°C, representing seasonal means). The breadth of the performance curve of burst locomotor performance (measured at 10, 15, 20, 25, and 30°C, representing annual range) is greatest when egg developmental and acclimation temperatures coincide. The mode of the performance curves shifted with acclimation conditions and maximum performance was always at higher temperatures than acclimation conditions. Performance curves of glycolytic (lactate dehydrogenase activities) and mitochondrial (citrate synthase and cytochrome c oxidase) enzymes were modulated by interactions between egg incubation and acclimation temperatures. Lactate dehydrogenase activity paralleled patterns seen in burst locomotor performance, but oxygen consumption rates and mitochondrial enzyme activities did not mirror growth or locomotor performance. We show that embryonic developmental conditions can modulate performance curves of later life-history stages, thereby conferring flexibilty to respond to environmental conditions later in life.  相似文献   

10.
We use a full factorial design to investigate the effects of maternal and paternal developmental temperature, as well as female oviposition temperature, on egg size in the butterfly Bicyclus anynana. Butterflies were raised at two different temperatures and mated in four possible sex-by-parental-temperature crosses. The mated females were randomly divided between high and low oviposition temperatures. On the first day after assigning the females to different temperatures, only female developmental temperature affected egg size. Females reared at the lower temperature laid larger eggs than those reared at a higher temperature. When eggs were measured again after an acclimation period of 10 days, egg size was principally determined by the prevailing temperature during oviposition, with females ovipositing at a lower temperature laying larger eggs. In contrast to widely used assumptions, the effects of developmental temperature were largely reversible. Male developmental temperature did not affect egg size in either of the measurements. Overall, developmental plasticity and acclimation in the adult stage resulted in very similar patterns of egg size plasticity. Consequently, we argue that the most important question when testing the significance of acclamatory changes is not at which stage a given plasticity is induced, but rather whether plastic responses to environmental change are adaptive or merely physiological constraints.  相似文献   

11.
DNA polymerases and DNA ligases have been studied during development of the amphibian, axolotl. Three forms of DNA polymerase, I, II, and III, with sedimentation coefficients in sucrose of 9, 6, and 3.1 S, respectively, have been found in the axolotl egg. The activity of these three DNA polymerases is unchanged during early embryonic development. The activity of DNA polymerase III then increases significantly, beginning at the tailbud stage, while the activity of DNA polymerase II increases at the larval stage. DNA polymerase I does not show significant variations during this time. On the basis of their catalytic properties, it appears that DNA polymerases I and II are α-type DNA polymerases whereas DNA polymerase III is a β-type enzyme. Two different DNA ligases are found in the axolotl, one showing a sedimentation coefficient in sucrose of 8.2 S (heavy form) and the other, 6 S (light form). The 6 S enzyme is the major DNA ligase activity found in the egg before and after fertilization. Its activity then decreases during embryonic development. It can be observed again, as the only DNA ligase activity, in some adult tissues. The 8.2 S enzyme appears during the first division cycle of the fertilized egg, is present at all stages of embryonic development, and is absent from the adult tissues tested. Properties of the two DNA ligases at different stages of embryonic development have also been compared.  相似文献   

12.
G. Ernsting  F. A. Huyer 《Oecologia》1984,62(3):361-367
Summary Egg production and development of the carabid beetles Notiophilus biguttatus F. and Notiophilus rufipes Curtis were studied in relation to temperature. Adult beetles and larvae were fed springtails of the species Orchesella cincta (Linné). The rate of egg production, at the different temperatures did not differ between the species. As observed in N. biguttatus egg production at a daily fluctuating temperature regime is high compared to egg production at the constant temperatures. Food supply not only has a strong effect on egg production but also on the relation of egg production with temperature, as shown in N. biguttatus. Development times in N. rufipes are longer than in N. biguttatus particularly at low temperatures. The temperature during development has a distinct effect on adult body size. As observed in N. biguttatus body size and fecundity show a strong positive correlation.  相似文献   

13.
Homeothermic animals, including birds, try to keep their body temperature at a constant level within certain boundaries by using thermoregulatory mechanisms. However, during incubation, the thermoregulatory system of the chicken embryo evolves through different stages from a poikilothermic to a homeothermic system. Hence, the thermal response of the fertile egg to changes in ambient temperature is different from one day to another during the embryonic development. The incubated egg can be considered as a physical (thermal) system, which transfers energy (heat) down a potential gradient (temperature difference). The heat flow between the micro-environment and the eggshell under a thermal driving force (temperature difference) has been studied in the past by using the analogy to the flow of electric charge under an electromotive-force. In this work, the thermal-response of incubated eggs to a step-increase in ambient-air temperature is studied and modelled. It is shown that the incubated egg is reacting as a first-order system between embryonic days ED01 and ED13, while, starting from ED14, the egg is reacting as a second-order system. This extends the existing RC (resistor–capacitor) circuit analogue to an RLC (resistor–inductor–capacitor) circuit analogue at the later stage of incubation. The concept of considering the fertile egg and its surrounding environment as an energy-handling device is introduced in this paper. It is suggested that the thermoregulation of the embryo has a thermal induction-like effect starting from ED14 and increasing gradually till hatching.  相似文献   

14.
The effect of allozyme variation at the sn-glycerol-3-phosphate dehydrogenase (Gpdh) locus on variation in the mechanical power output of the flight muscles of Drosophila melanogaster was investigated. The influence of different rearing and flight temperatures and of their interactions with the Gpdh allozymic genotypes (allotypes) on flight ability also were analyzed. Populations from three continents were used, and Gpdh allotypes were generated from crosses between randomly paired isofemale lines made autozygous for each of the two alleles by inbreeding. Measurements made during tethered flight, together with wing morphology, were used to estimate power output using both Weis-Fogh's and Ellington's formulas. Analyses of variance (ANOVA) indicated significant main effects for both environmental components (rearing and flight temperatures) but for only one of the three genetic components (genetic backgrounds within continent); Gpdh allotypes and populations (continent of origin) were not significant. The interaction between rearing and flight temperature was highly significant, indicating some physiological adaptation. The effect of Gpdh allozymes depended on both rearing and flight temperature and was either significant or marginally so, depending on which set of formulas was used. In either case, the S/S allotype showed a 2-4% greater power output than the F/F allotype at low temperature for both interactions. In addition, the S/S allotype showed significantly greater power output than the F/F allotype among flies raised at 15 degrees and flown at 15 degrees, whereas the reverse was true for flies raised at 30 degrees and flown at 30 degrees. Significant differences among the three allotypes for GPDH activity level were found in general, with S/S having the highest, F/S intermediate and F/F the lowest activity, and an inverse relationship existed between rearing temperature and activity. The temperature effects on power output are consistent with the geographical and seasonal variation observed at the Gpdh locus in nature. In general, the results show that Gpdh can be considered a minor polygene affecting quantitative variation in the power output during flight and that genotype-by-environment interaction is an important component of that effect.  相似文献   

15.
SUMMARY. The development times of the egg, nauplius and copepodite stages of seven species of freshwater benthic copepods ( Paracyclops fimbriatus, Canthocamptus staphylinus, Attheyella crassa, Moraria brevipes, M. mrazeki, Bryocamptus echinatus and Paracamptus schmeili ) were determined at constant temperatures ranging from 1.5 to 24°C using detritus as food. Several regression models used earlier to describe the temperature dependence of development were tested on this material.
Species differed both in the rapidity of development and in the magnitude of the effect of temperature. Development times usually decreased with increasing temperature, but in M. brevipes temperatures exceeding 16°C retarded postembryonic development. P. fimbriatus developed at a rate comparable to that reported earlier for littoral cyclopoids. All the harpacticoid species developed more slowly than planktonic, littoral or benthic copepods previously studied, but faster than subterranean species. The effect of temperature was most marked in species reproducing in warm water.
The relationship between rate of development and temperature was not linear. None of the curvilinear temperature functions tested was statistically adequate in all cases. However, three of the models gave a reasonable fit to all egg development data, and one of these, the semilogarithmic quadratic equation, ln D = In a + T In b + T2 In c , also satisfactorily described postembryonic development. This model accommodates the retardation of development at higher temperatures, and can therefore be recommended for further testing.  相似文献   

16.
Phenotypic plasticity may allow an organism to adjust its phenotype to environmental needs. However, little is known about environmental effects on offspring biochemical composition and turnover rates, including energy budgets and developmental costs. Using the tropical butterfly Bicyclus anynana and employing a full-factorial design with two oviposition and two developmental temperatures, we explore the consequences of temperature variation on egg and hatchling composition, and the associated use and turnover of energy and egg compounds. At the lower temperature, larger but fewer eggs were produced. Larger egg sizes were achieved by provisioning these eggs with larger quantities of all compounds investigated (and thus more energy), whilst relative egg composition was rather similar to that of smaller eggs laid at the higher temperature. Turnover rates during embryonic development differed across developmental temperatures, suggesting an emphasis on hatchling quality (i.e. protein content) at the more stressful lower temperature, but on storage reserves (i.e. lipids) at the higher temperature. These differences may represent adaptive maternal effects. Embryonic development was much more efficient at the lower temperature, providing a possible mechanism underlying the temperature-size rule.  相似文献   

17.
1. Egg masses, oviposition site preferences, and abiotic and biotic factors causing mortality during embryonic, larval and adult life stages of Apatania fimbriata were studied. Laboratory investigations provided information on the temperature dependence of embryonic development, measured as an increase in egg volume.
2. A. fimbriata laid hemispherical egg masses, consisting of a transparent matrix containing a mean of 208 eggs. Egg masses were laid on stones situated just above the water surface in dark cavities in the stream bank.
3. Two hundred egg masses were mapped and individually monitored during embryonic development. There was no significant correlation between mortality during embryonic development and any of the abiotic parameters measured. First-instar larvae of Osmylus fulvicephalus consumed developing eggs, and chironomids preyed on newly hatched larvae.
4. A mean of seventy-two females emerged per metre of stream. Mortality during the 1993/94 life cycle was measured as a percentage of the potential number of eggs laid. Female mortality between emergence and oviposition was ≈ 80%. Eight per cent of individuals were lost during embryonic development. Larval mortality to emergence in 1994 was 11.3%. This indicates that the terrestrial life stage is probably decisive in the regulation of A. fimbriata populations.
5. Duration of embryogenesis at constant temperatures (4–20 °C) in the laboratory was described best by a negative exponential function. This species is cold stenothermal and there was no hatching success at 20 °C.
6. Egg volumes during embryonic development increased sigmoidally over time.  相似文献   

18.
1. Egg masses, oviposition site preferences, and abiotic and biotic factors causing mortality during embryonic, larval and adult life stages of Apatania fimbriata were studied. Laboratory investigations provided information on the temperature dependence of embryonic development, measured as an increase in egg volume.
2. A. fimbriata laid hemispherical egg masses, consisting of a transparent matrix containing a mean of 208 eggs. Egg masses were laid on stones situated just above the water surface in dark cavities in the stream bank.
3. Two hundred egg masses were mapped and individually monitored during embryonic development. There was no significant correlation between mortality during embryonic development and any of the abiotic parameters measured. First-instar larvae of Osmylus fulvicephalus consumed developing eggs, and chironomids preyed on newly hatched larvae.
4. A mean of seventy-two females emerged per metre of stream. Mortality during the 1993/94 life cycle was measured as a percentage of the potential number of eggs laid. Female mortality between emergence and oviposition was ≈ 80%. Eight per cent of individuals were lost during embryonic development. Larval mortality to emergence in 1994 was 11.3%. This indicates that the terrestrial life stage is probably decisive in the regulation of A. fimbriata populations.
5. Duration of embryogenesis at constant temperatures (4–20 °C) in the laboratory was described best by a negative exponential function. This species is cold stenothermal and there was no hatching success at 20 °C.
6. Egg volumes during embryonic development increased sigmoidally over time.  相似文献   

19.
W. VAN  DOORSLAER  R. STOKS 《Freshwater Biology》2005,50(12):1982-1990
1. We studied the temperature‐dependence of important life‐history traits both at the embryonic (egg hatching success, embryonic development time and hatchling size) and the larval stage (larval growth rate, larval survival and larval size after 100 days) using full‐sib families of two congeneric damselflies, Coenagrion hastulatum and Coenagrion puella, that differ in latitudinal distribution. Larvae were reared in the laboratory from the egg stage at four temperatures (12, 17, 22 and 27 °C). 2. The observed patterns of thermal plasticity in embryonic traits showed that the northern species was more successful than the southern species at lower temperatures, in line with the pattern of temperature adaptation in thermal reaction norms. 3. At the larval stage, we found no consistent pattern of latitudinal compensation. The thermal family reaction norms indicate, however, the potential for latitudinal compensation to evolve. We observed an ontogenetic shift in thermal optima for larval growth rate, with a higher optimal temperature for growth rate during the first 2 weeks of the larval stage. 4. This is the first indication of the existence of latitudinal compensation at the interspecific level in an invertebrate; it is stage‐specific, being present only in the embryonic stage. We argue that compensation in the embryonic stage may be much more likely than in the larvae and stress the importance of including more then one life‐history stage when drawing conclusions about the adaptiveness of patterns in thermal reaction norms.  相似文献   

20.
Diaptomus pallidus individuals were raised in the laboratory at three temperatures (15, 20, and 25°C) and fed an alfalfa and trout-food diet ad libitum. Data were taken on the development times of the egg, naupliar, and each copepodid stage and the brood sizes of field animals acclimated to the test conditions.The results indicated D. pallidus does not have a temperature range over which its development rate is nearly constant as earlier reported. Rather, the development rate is temperature dependent within the experimental range. Broods produced at 20°C and 25°C were significantly smaller than those produced at 15°C but not significantly different from each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号