首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We previously reported that p97/p47-assisted membrane fusion is important for the reassembly of organelles at the end of mitosis, but not for their maintenance during interphase. We have now identified a p97 adaptor protein, p37, which forms a complex with p97 in the cytosol and localizes to the Golgi and ER. siRNA experiments revealed that p37 is required for Golgi and ER biogenesis. Injection of anti-p37 antibodies into cells at different cell cycle stages showed that p37 plays an important role in both Golgi and ER maintenance during interphase as well as in their reassembly at the end of mitosis. In an in vitro Golgi reassembly assay, the p97/p37 complex has membrane fusion activity. In contrast to the p97/p47 pathway, this pathway requires p115-GM130 tethering and SNARE GS15, but not syntaxin5. Interestingly, although VCIP135 is also required, its deubiquitinating activity is unnecessary for p97/p37-mediated activities.  相似文献   

2.
In mammalian cells, the Golgi apparatus and endoplasmic reticulum have typical structures during interphase: stacked cisternae located adjacent to the nucleus and a network of interconnected tubules throughout the cytoplasm, respectively. At mitosis their architectures disappear and are reassembled in daughter cells. p97, an AAA-ATPase, mediates membrane fusion and is required for reassembly of these organelles. In the p97-mediated membrane fusion, p47 was identified as an essential cofactor, through which p97 binds to a SNARE, syntaxin5. A second essential cofactor, VCIP135, was identified as a p97/p47/syntaxin5-interacting protein. Several lines of recent evidence suggest that ubiquitination may be implicated in the p97/p47 pathway; p47 binds to monoubiquitinated proteins and VCIP135 shows a deubiquitinating activity in vitro. For the cell-cycle regulation of the p97/p47 pathway, it has been reported that the localization and phosphorylation-dephosphorylation of p47 are crucial. In this review, we describe the components involved in the p97-mediated membrane fusion and discuss the regulation of the fusion pathway.  相似文献   

3.
The AAA+ATPase p97/VCP, helped by adaptor proteins, exerts its essential role in cellular events such as endoplasmic reticulum-associated protein degradation or the reassembly of Golgi, ER and the nuclear envelope after mitosis. Here, we report the three-dimensional cryo-electron microscopy structures at approximately 20 Angstroms resolution in two nucleotide states of the endogenous hexameric p97 in complex with a recombinant p47 trimer, one of the major p97 adaptor proteins involved in membrane fusion. Depending on the nucleotide state, we observe the p47 trimer to be in two distinct arrangements on top of the p97 hexamer. By combining the EM data with NMR and other biophysical measurements, we propose a model of ATP-dependent p97(N) domain motions that lead to a rearrangement of p47 domains, which could result in the disassembly of target protein complexes.  相似文献   

4.
5.
Apicomplexan parasites have an assortment of unique apical secretory organelles (rhoptries and micronemes), which have crucial functions in host infection. Here, we show that a Toxoplasma gondii sortilin-like receptor (TgSORTLR) is required for the subcellular localization and formation of apical secretory organelles. TgSORTLR is a transmembrane protein that resides within Golgi-endosomal related compartments. The lumenal domain specifically interacts with rhoptry and microneme proteins, while the cytoplasmic tail of TgSORTLR recruits cytosolic sorting machinery involved in anterograde and retrograde protein transport. Ectopic expression of the N-terminal TgSORTLR lumenal domain results in dominant negative effects with the mislocalization of both endogenous TgSORTLR as well as rhoptry and microneme proteins. Conditional ablation of TgSORTLR disrupts rhoptry and microneme biogenesis, inhibits parasite motility, and blocks both invasion into and egress from host cells. Thus, the sortilin-like receptor is essential for protein trafficking and the biogenesis of key secretory organelles in Toxoplasma.  相似文献   

6.
In eukaryotic cells, the endoplasmic reticulum-associated degradation (ERAD) pathway is essential for the disposal of misfolded proteins. Recently, we demonstrated the existence of a higher order complex consisting of the ER bound E3 ligase gp78, p97, PNGase, and HR23B in mammals. This complex may serve to facilitate the routing of misfolded glycoproteins out of the ER to the cytosol where they are degraded by the proteasome. In this complex, p97 functions as an organizer to mediate the interactions with gp78 and the deglycosylating enzyme PNGase. A novel protein-binding motif of mouse p97 was identified that consists of its last 10 amino acid residues; this motif is sufficient to mediate the interaction of p97 with PNGase and Ufd3. Phosphorylation of p97’s highly conserved penultimate tyrosine residue, completely blocks binding of both PNGase and Ufd3 to mp97. We have found that c-Src kinase directly and selectively phosphorylated the penultimate tyrosine of p97 in vitro, and that overexpression of c-Src significantly increased the phosphorylation level of p97 in cells and caused accumulation of the ERAD substrate TCRα-GFP, as well as ubiquitin-conjugated substrates. These results suggest a role for p97 phosphorylation in the degradation of misfolded glycoproteins.  相似文献   

7.
The AAA ATPase p97/VCP is involved in many cellular events including ubiquitin-dependent processes and membrane fusion. In the latter, the p97 adaptor protein p47 is of central importance. In order to provide insight into the molecular basis of p97 adaptor binding, we have determined the crystal structure of p97 ND1 domains complexed with p47 C-terminal domain at 2.9 A resolution. The structure reveals that the p47 ubiquitin regulatory X domain (UBX) domain interacts with the p97 N domain via a loop (S3/S4) that is highly conserved in UBX domains, but is absent in ubiquitin, which inserts into a hydrophobic pocket between the two p97 N subdomains. Deletion of this loop and point mutations in the loop significantly reduce p97 binding. This hydrophobic binding site is distinct from the predicted adaptor-binding site for the p97/VCP homologue N-ethylmaleimide sensitive factor (NSF). Together, our data suggest that UBX domains may act as general p97/VCP/CDC48 binding modules and that adaptor binding for NSF and p97 might involve different binding sites. We also propose a classification for ubiquitin-like domains containing or lacking a longer S3/S4 loop.  相似文献   

8.
p47 is a major adaptor molecule of the cytosolic AAA ATPase p97. The principal role of the p97-p47 complex is in regulation of membrane fusion events. Mono-ubiquitin recognition by p47 has also been shown to be crucial in the p97-p47-mediated Golgi membrane fusion events. Here, we describe the high-resolution solution structures of the N-terminal UBA domain and the central domain (SEP) from p47. The p47 UBA domain has the characteristic three-helix bundle fold and forms a highly stable complex with ubiquitin. We report the interaction surfaces of the two proteins and present a structure for the p47 UBA-ubiquitin complex. The p47 SEP domain adopts a novel fold with a betabetabetaalphaalphabeta secondary structure arrangement, where beta4 pairs in a parallel fashion to beta1. Based on biophysical studies, we demonstrate a clear propensity for the self-association of p47. Furthermore, p97 N binding abolishes p47 self-association, revealing the potential interaction surfaces for recognition of other domains within p97 or the substrate.  相似文献   

9.
Meyer HH  Wang Y  Warren G 《The EMBO journal》2002,21(21):5645-5652
The multiple functions of the p97/Cdc48p ATPase can be explained largely by adaptors that link its activity to different cellular pathways, but how these adaptors recognize different substrates is unclear. Here we present evidence that the mammalian adaptors, p47 and Ufd1-Npl4, both bind ubiquitin conjugates directly and so link p97 to ubiquitylated substrates. In the case of Ufd1-Npl4, which is involved in endoplasmic reticulum (ER)-associated degradation and nuclear envelope reassembly, binding to ubiquitin is mediated through a putative zinc finger in Npl4. This novel domain (NZF) is conserved in metazoa and is both present and functional in other proteins. In the case of p47, which is involved in the reassembly of the ER, the nuclear envelope and the Golgi apparatus, binding is mediated by a UBA domain. Unlike Ufd1-Npl4, it binds ubiquitin only when complexed with p97, and binds mono- rather than polyubiquitin conjugates. The UBA domain is required for the function of p47 in mitotic Golgi reassembly. Together, these data suggest that ubiquitin recognition is a common feature of p97-mediated reactions.  相似文献   

10.
The apoptosis-associated speck-like protein (ASC) is an unusual adaptor protein that contains the Pyrin/PAAD death domain in addition to the CARD protein-protein interaction domain. Here, we present evidence that ASC can function as an adaptor molecule for Bax and regulate a p53-Bax mitochondrial pathway of apoptosis. When ectopically expressed, ASC interacted directly with Bax, colocalized with Bax to the mitochondria, induced cytochrome c release with a significant reduction of mitochondrial membrane potential and resulted in the activation of caspase-9, -2 and -3. The rapid induction of apoptosis by ASC was not observed in Bax-deficient cells. We also show that induction of ASC after exposure to genotoxic stress is dependent on p53. Blocking of endogenous ASC expression by small-interfering RNA (siRNA) reduced the apoptotic response and inhibited translocation of Bax to mitochondria in response to p53 or genotoxic insult, suggesting that ASC is required to translocate Bax to the mitochondria. Our findings demonstrate that ASC has an essential role in the intrinsic mitochondrial pathway of apoptosis through a p53-Bax network.  相似文献   

11.
The molecular details of the biogenesis of double-membraned autophagosomes are poorly understood. We identify the Saccharomyces cerevisiae AAA–adenosine triphosphatase Cdc48 and its substrate-recruiting cofactor Shp1/Ubx1 as novel components needed for autophagosome biogenesis. In mammals, the Cdc48 homologue p97/VCP and the Shp1 homologue p47 mediate Golgi reassembly by extracting an unknown monoubiquitinated fusion regulator from a complex. We find no requirement of ubiquitination or the proteasome system for autophagosome biogenesis but detect interaction of Shp1 with the ubiquitin-fold autophagy protein Atg8. Atg8 coupled to phosphatidylethanolamine (PE) is crucial for autophagosome elongation and, in vitro, mediates tethering and hemifusion. Interaction with Shp1 requires an FK motif within the N-terminal non–ubiquitin-like Atg8 domain. Based on our data, we speculate that autophagosome formation, in contrast to Golgi reassembly, requires a complex in which Atg8 functionally substitutes ubiquitin. This, for the first time, would give a rationale for use of the ubiquitin-like Atg8 during macroautophagy and would explain why Atg8-PE delipidation is necessary for efficient macroautophagy.  相似文献   

12.
Many heterotrophic bacteria have the ability to make polyhedral structures containing metabolic enzymes that are bounded by a unilamellar protein shell (metabolosomes or enterosomes). These bacterial organelles contain enzymes associated with a specific metabolic process (e.g. 1,2-propanediol or ethanolamine utilization). We show that the 21 gene regulon specifying the pdu organelle and propanediol utilization enzymes from Citrobacter freundii is fully functional when cloned in Escherichia coli, both producing metabolosomes and allowing propanediol utilization. Genetic manipulation of the level of specific shell proteins resulted in the formation of aberrantly shaped metabolosomes, providing evidence for their involvement as delimiting entities in the organelle. This is the first demonstration of complete recombinant metabolosome activity transferred in a single step and supports phylogenetic evidence that the pdu genes are readily horizontally transmissible. One of the predicted shell proteins (PduT) was found to have a novel Fe-S center formed between four protein subunits. The recombinant model will facilitate future experiments establishing the structure and assembly of these multiprotein assemblages and their fate when the specific metabolic function is no longer required.  相似文献   

13.
It is becoming increasingly evident that all eukaryotes characterized to date bear some mitochondrial trait, whether it be a 'real' mitochondrion, a hydrogenosome, a mitosome or a few genes left behind from secondary losses of organelles. The implication is that the evolutionary history of the mitochondrion may reveal the history of the eukaryotic cell itself.  相似文献   

14.
Summary— By classical electron microscopy and immunoelectron microscopy, the biogenesis of trichocyst secretory granules has been followed in the ciliated protozoan Pseudomicrothorax dubius. The very early pre-trichocysts form by fusion of bristle-coated, electron-dense vesicles (dense vesicles) with electron-translucent vesicles (clear vesicles), both of which originate in a well-developed trans-Golgi network (TGN). The pre-trichocyst grows by further fusion with dense and clear vesicles as well as with other pre-trichocysts until it reaches its maximum diameter of about 2 μm. Dense and clear vesicle formation from the TGN has been followed, and the fusion sequence of dense vesicles with the pre-trichocyst has been documented. The contents of the dense vesicles are the precursors of the trichocyst tip, which is composed of four arm-like rods, whereas the shaft precursors are supplied by the clear vesicles. The first evidence of trichocyst shaft formation is the appearance of a paracrystalline, dense core condensation center in the pre-trichocyst. Following shaft formation, the trichocyst tip forms by fusion and condensation of the dense arm precursors along each of the four sides of the shaft. Docking of the fully formed trichocyst in the cell cortex is described. Pre-trichocyst biogenesis in cells grown with and without Se is compared.  相似文献   

15.
Circular RNAs (circRNAs) are highly expressed in the brain and their expression increases during neuronal differentiation. The factors regulating circRNAs in the developing mouse brain are unknown. NOVA1 and NOVA2 are neural-enriched RNA-binding proteins with well-characterized roles in alternative splicing. Profiling of circRNAs from RNA-seq data revealed that global circRNA levels were reduced in embryonic cortex of Nova2 but not Nova1 knockout mice. Analysis of isolated inhibitory and excitatory cortical neurons lacking NOVA2 revealed an even more dramatic reduction of circRNAs and establishes a widespread role for NOVA2 in enhancing circRNA biogenesis. To investigate the cis-elements controlling NOVA2-regulation of circRNA biogenesis, we generated a backsplicing reporter based on the Efnb2 gene. We found that NOVA2-mediated backsplicing of circEfnb2 was impaired when YCAY clusters located in flanking introns were mutagenized. CLIP (cross-linking and immunoprecipitation) and additional reporter analyses demonstrated the importance of NOVA2 binding sites located in both flanking introns of circRNA loci. NOVA2 is the first RNA-binding protein identified to globally promote circRNA biogenesis in the developing brain.  相似文献   

16.
17.
Syndecan-syntenin-ALIX regulates the biogenesis of exosomes   总被引:2,自引:0,他引:2  
The biogenesis of exosomes, small secreted vesicles involved in signalling processes, remains incompletely understood. Here, we report evidence that the syndecan heparan sulphate proteoglycans and their cytoplasmic adaptor syntenin control the formation of exosomes. Syntenin interacts directly with ALIX through LYPX(n)L motifs, similarly to retroviral proteins, and supports the intraluminal budding of endosomal membranes. Syntenin exosomes depend on the availability of heparan sulphate, syndecans, ALIX and ESCRTs, and impact on the trafficking and confinement of FGF signals. This study identifies a key role for syndecan-syntenin-ALIX in membrane transport and signalling processes.  相似文献   

18.
19.
Endoplasmic reticulum-associated degradation (ERAD) is an essential quality control process whereby misfolded proteins are exported from the endoplasmic reticulum and degraded by the proteasome in the cytosol. The ATPase p97 acts as an essential component of this process by providing the force needed for retrotranslocation and by serving as a processing station for the substrate once in the cytosol. Proteins containing the ubiquitin regulatory X (UBX) ubiquitin-like domain function as adaptors for p97 through their direct binding with the amino terminus of the ATPase. We demonstrate that the UBX protein SAKS1 is able to act as an adaptor for p97 that negatively modulates ERAD. This requires the ability of SAKS1 to bind both polyubiquitin and p97. Moreover, the association between SAKS1 and p97 is positively regulated by polyubiquitin binding of the UBX protein. SAKS1 also negatively impacts the p97-dependent processing required for degradation of a cytosolic, non-ERAD, substrate. We find SAKS1 is able to protect polyubiquitin from the activity of deubiquitinases, such as ataxin-3, that are necessary for efficient ERAD. Thus, SAKS1 inhibits protein degradation mediated by p97 complexes in the cytosol with a component of the mechanism being the ability to shield polyubiquitin chains from ubiquitin-processing factors.  相似文献   

20.
Metabolic stimuli such as insulin and insulin like growth factor cause cellular accumulation of G protein coupled receptor kinase 2 (GRK2), which in turn is able to induce insulin resistance. Here we show that in fibroblasts, GRK2 is able to increase ATP cellular content by enhancing mitochondrial biogenesis; also, it antagonizes ATP loss after hypoxia/reperfusion. Interestingly, GRK2 is able to localize in the mitochondrial outer membrane, possibly through one region within the RGS homology domain and one region within the catalytic domain. In vivo, GRK2 removal from the skeletal muscle results in reduced ATP production and impaired tolerance to ischemia. Our data show a novel sub-cellular localization of GRK2 in the mitochondria and an unexpected role in regulating mitochondrial biogenesis and ATP generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号