首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rejection of the MHC class I negative 402AX teratocarcinoma is accompanied by induction of tumor cell-encoded H-2K and H-2D antigens by the genetically resistant host. To determine whether MHC antigen expression is required for 402AX rejection, we have prepared H-2Db-transfected 402AX cells (402AX/Db). Transfectants express high levels of H-2Db, most of which is not associated with beta 2-microglobulin. MHC syngeneic and allogeneic mice susceptible to 402AX are resistant to 402AX/Db, suggesting that MHC class I antigen expression is required for tumor rejection. Autologous 129 hosts, however, are susceptible to 402AX/Db. 402AX cells transfected with the H-2Kb gene (402AX/Kb) are also lethal in the autologous 129/J host, but rejected by MHC syngeneic and allogeneic mice. Non-129 strain 402AX-susceptible mice pre-immunized with 402AX/Db or simultaneously challenged with 402AX/Db plus 402AX are immune to 402AX. Mice immunized with 402AX/Db produce MHC class I induction factor. 402AX/Db and 402AX cells are lysed equally by natural killer cells, indicating that in 402AX cells the expression of class I antigens is unrelated to NK susceptibility. These studies confirm the requirement for class I expression in 402AX immunity, but demonstrate that in the autologous host immunity requires additional factors beyond class I antigen expression.  相似文献   

2.
The murine 402AX teratocarcinoma is a MHC class I antigen negative tumor of 129 strain origin. Host resistance to the 402AX tumor is genetically controlled. When passed intraperitoneally in genetically resistant mice, the tumor cells are induced to express MHC Class I antigens of the 129 genotype. When passed in genetically susceptible mice, the tumor cells remain MHC class I antigen negative. Earlier studies have demonstrated that resistance to the tumor and regulation of tumor cell MHC class I antigen expression are under the control of the host's immune system. The present studies indicate that splenic Lyt 1-, Lyt 2-, and L3T4-expressing cells regulate tumor cell MHC class I antigen expression, and that these cells require a genetically resistant host environment in which to differentiate. Splenic T cells primed to the 402AX tumor and transferred into genetically susceptible 129 mice give rise to GVHD, suggesting that immunity to the tumor involves reactivity to 129 minor histocompatibility antigens.  相似文献   

3.
Undifferentiated murine 402AX teratocarcinoma cells do not express MHC antigens when passaged in vitro or in vivo in genetically susceptible host mice. When passaged in vivo in genetically resistant mice, however, the tumor cells become H-2b antigen positive regardless of the H-2 haplotype of the resistant host mouse. The present studies use monoclonal anti-H-2b antibodies to corroborate these earlier findings, which were performed with conventional antisera. Previous studies have established that host bone marrow plus lymphoid cells from resistant primed donors regulate tumor cell H-2b antigen expression. Using bone marrow and mature lymphoid cell reconstitution techniques, the present studies indicate that splenic Ig- cells from genetically resistant host mice are the most efficient lymphoid cell subpopulation in tumor cell H-2b antigen induction. Ig+ spleen cells also reconstitute the capacity to induce teratocarcinoma cell H-2 antigens but are less effective than Ig- spleen cells. Tumor cell H-2 antigen induction in C57BL/6 beige mice is impaired compared to C57BL/6 hosts, which suggests that host NK cells may also be involved in tumor cell H-2 antigen induction. Reconstitution of lethally irradiated resistant hosts for teratocarcinoma cell H-2 antigen expression requires bone marrow plus resistant primed lymphoid cell subpopulations; bone marrow alone is insufficient. These results indicate that multiple splenic lymphoid cell subpopulations requiring a radiosensitive host environment and/or factor for differentiation regulate teratocarcinoma 402AX H-2b antigen expression in vivo in genetically resistant mice.  相似文献   

4.
5.
The 402AX murine teratocarcinoma is a spontaneous testicular tumor of 129 (H-2b) origin which does not express MHC encoded antigens. Rejection of this tumor is immunologically mediated and the tumor cells are induced in vivo to synthesize H-2b antigens when passaged in genetically resistant host mice. The present studies demonstrate that serum from tumor primed genetically resistant host mice can induce tumor cell MHC antigen expression in vitro as measured by indirect immunofluorescence using monoclonal antibodies. The inducing factor is specific for 402AX tumor cells and is not interferon as shown by the lack of response of the 402AX tumor to gamma interferon, and the absence of significant interferon activity in inducer serum. These studies demonstrate another factor independent of interferon that can induce MHC class I antigen expression on tumor cells.  相似文献   

6.
It is well documented that activated macrophages, but not nonactivated ones, kill tumor cells in vitro without damaging normal cells. We, however, have previously shown that embryo-derived teratocarcinoma cells (F9, P19, PCC4) are efficiently killed by nonactivated macrophages as well as by activated ones. Whereas other tumor cells are killed extracellularly by macrophages, we found that F9 teratocarcinoma cells are phagocytosed alive by macrophages and subsequently killed intracellularly by a process dependent on intact lysosomal function. Neither the H-2 antigens nor the mRNAs for the alpha-chain and beta 2-microglobulin are detectable in embryo-derived teratocarcinoma cells. An obvious explanation for this unique killing is that the nonactivated macrophages recognize and kill these cells due to their lack of class I MHC antigen expression, assuming that class I MHC gene products on the target cells switch off the cytolytic machinery of nonactivated macrophages. Our present findings demonstrate that there is no correlation between H-2 antigen expression on tumor cells and their susceptibility to killing by macrophages. Retinoic acid-differentiated F9 cells and P19 cells expressing H-2 antigen after exposure to MAF (IFN-gamma) were sensitive to the killing by nonactivated macrophages. Hybrids that arose from fusion of P19 teratocarcinoma cells with embryonal normal fibroblasts (C57BL/6), which displayed the morphology of embryonal carcinoma stem cells and expressed H-2 antigens, were also sensitive to the killing by nonactivated macrophages. On the other hand, the H-2-negative testicular 402AX teratocarcinoma cells and K1735P melanoma cells were both resistant to the killing by nonactivated macrophages. We concluded that the unique killing of embryo-derived teratocarcinoma cells by nonactivated murine macrophages is not related to a lack of H-2 antigen expression.  相似文献   

7.
Mice of most strains show a genetically determined ability to reject a variety of foreign marrow grafts even after lethal irradiation. The phenomenon is both host strain and donor marrow graft-dependent. To characterize the effector cell responsible for graft rejection, attempts were made to 1) determine to what morphologic subclass it belongs; 2) determine its life span; and 3) establish whether genetically different host environments influence the functioning of the effector cell. Mice of the 129/J strain (normally nonresistant), C57BL/6 strain (made non-resistant), and the homozygous mutants of C57BL/6, i.e., C57BL/6 (bg/bg), were recipients of C57BL/6 marrow or spleen cells. After lethal irradiation, hosts were given marrow or spleen cells from normal, strongly resistant C57BL/6 donors pretreated with a) 950 R whole body irradiation or b) twice daily injections for 4 days of the cell cycle toxic drug hydroxyurea followed by 950 R. In other cases, hosts were recipients of the lymphoid cell-rich fraction of marrow from irradiated C57BL/6 donors or adherent cells taken from cultures of marrow cells of unirradiated C57BL/6 donors. Three hours after receiving C57BL/6 marrow or spleen cells, irradiated hosts were given allogeneic DBA/2 marrow (always strongly rejected by C57BL/6 mice and always accepted by 129/J strain mice). Seven days later, host spleens were removed and the numbers of microscopic colonies were counted from subserial sections. The results demonstrate that 1) mice either normally or rendered nonresistant to a marrow allograft can be made to develop resistance by the administration of either whole spleen cells or marrow lymphoid cells from lethally irradiated strongly resistant donors; 2) adherent cells from cultures of marrow from strongly resistant mice are ineffective in conferring resistance; 3) the cell effective in conferring resistance has a life span greater than 4 but less than 7 days; and 4) the effector cell can function in genetically different environments of nonresistant strains.  相似文献   

8.
Minor histocompatibility antigens (MiHAs) stimulate the rejection of allografts when donors and recipients are matched at the major histocompatibility complex (MHC). The majority of identified autosomal MiHAs were generated by non-synonymous (NS) substitutions that alter MHC class I-binding peptides. The mosaic distribution of single nucleotide polymorphisms (SNPs) that distinguish inbred mouse strains led us to hypothesize that MiHA genes defined by congenic strains on C57BL/6 and C57BL/10 backgrounds map to chromosomal regions with relatively high numbers of NS SNPs that distinguish C57 strains from other common inbred strains. To test this hypothesis, we mapped the ends of differential chromosome segments of congenic strains, which define 12 MiHAs, relative to microsatellites and SNPs. The lengths of differential segments ranged from 9.7 to 105.9 Mbp in congenic strains where no attempts were made to select recombinants within these segments. There was no apparent correlation between differential segment length and number of backcrosses, suggesting that factors other than the number of opportunities for recombination affected the differential segment lengths in these congenics. These differential segments included higher numbers of NS SNPs that distinguish C57BL/6J from A/J, DBA/2J, and 129S1/J than would be predicted if these SNPs were uniformly distributed along the chromosomes. The most extreme case was the H8 congenic that included 74% of the SNPs on chromosome 14 within its 9.7-11.1 Mbp differential segment. These results point toward a direct relationship between the level of genomic divergence, as indicated by numbers of NS SNPs, and numbers of MiHAs that collectively determine the magnitude of allograft rejection.  相似文献   

9.
Recipient cells migrating into the transplantation site of an allograft recognize histocompatibility antigens on the grafts and are cytotoxic against the grafts. Although the alloreactive immune response is predominantly directed at the major histocompatibility complex (major histocompatibility complex [MHC]; H-2 in mice) class I molecules, the basic mechanisms of allograft rejection (e.g., ligand-receptor interaction) remain unclear, because of the polymorphism and complexity of the MHC. To examine the role of MHC class I molecules in allograft rejection, D(d) , K(d) or D(d) K(d) -transgenic skin or tumor cells we established on a C57BL/6 (D(b) K(b) ) background and transplanted into C57BL/6 mice. Skin grafts from allogeneic (i.e., BALB/c, B10.D2, and BDF1) strains of mice were rejected from C57BL/6 mice on days 12-14 after grafting, whereas isografts were tolerated by these mice. Unexpectedly, skin grafts from D(d) -, K(d) -, and D(d) K(d) -transgenic C57BL/6 mice were rejected on days 12-14 in a transgene expression rate-independent manner from 9/19 (47%), 20/39 (51%), and 12/17 (71%) of C57BL/6 mice, respectively. Similarly, intradermally transplanted allogeneic (i.e., Meth A), but not syngeneic (i.e., EL-4), tumor cells were rejected from C57BL/6 mice; the growth of D(d) - or K(d) -transfected EL-4 cells was delayed by 10-13 days; and 4/10 (40%) of D(d) K(d) -transfected tumor cells were rejected from C57BL/6 mice. These results indicate that D(d) and K(d) genes are equivalent as allogeneic MHC class I genes and that C57BL/6 (D(b) K(b) ) mice reject D(d) -, K(d) -, or D(d) K(d) -transgened skin or tumor cells in a transgene number-dependent, gene expression rate-independent manner.  相似文献   

10.
Cytotoxic T lymphocytes play a predominant role in allograft rejection. They mediate this process through recognition of foreign major histocompatibility complex (MHC) class I surface molecules encoded at the H2 locus. Embryonal carcinoma cells, the undifferentiated, neoplastic derivatives of primordial germ cells, typically lack detectable MHC class I gene expression. Despite this, embryonal carcinoma cells are subject to allograft rejection in several different mouse strains. In many instances, the H2 locus appears to be genetically linked to resistance. However, rejection of allografts of the F9 embryonal carcinoma cell line, a nullipotent cell line derived from the 129 mouse strain, does not appear to be H2-linked. Resistance to F9 tumor formation in the C57BL/6 mouse strain has been attributed to a single, unidentified locus termed Gt(B6). To genetically map the Gt(B6) locus, a total of 463 (C57BL/6x129)F2 mice were challenged with F9 cells, and 78 tumor-resistant mice were identified. Markers encompassing two candidate regions, the H2 locus on Chromosome (Chr) 17 and a second candidate locus on Chr 2, showed no indication of linkage to the resistance phenotype. Instead, results of a genome wide scan implicated mouse Chr 8, and evidence is presented demonstrating that the Gt(B6) locus maps to a region of less than 10 cM on the medial portion of Chr 8.  相似文献   

11.
Embryoid bodies (ascites tumor) from a 129/Sv transplantable teratocarcinoma produce tumors (100%) in syngenic 129/Sv mice but fail to form tumors (3–6%) in BALB/c mice, C3H/He mice and C57BL/6 mice, in spite of the fact that the malignant stem cells of this tumor do not express detectable H-2 antigens. The available evidence indicates that this allogeneic tumor restriction has an immunological basis; 100% of the F1 hybrid mice between 129/Sv and the three other inbred mouse strains accept the 129/Sv teratocarcinoma. The backcross and F2 mice segregate the BALB/c, C3H/He and C57BL/6 tumor transplantation rejection loci in a manner that indicates that each of these inbred strains of mice contain one to two major transplantation rejection loci. A linkage analysis in the BALB/c and C3H/He backcross and F2 generations indicates that these mice have a teratocarcinoma transplantation rejection locus on chromosome 17, about eight to nine recombination units from theH- 2 complex. An F1 complementation analysis between allogeneic mice that each reject teratocarcinomas tumors (BALB/c × C57BL/6 and C3H/He × C57BL/6), indicates that the C57BL/6 mice have the 129/Sv tumor-accepting (sensitive) allele at theH-2-linked locus but reject teratocarcinomas because of antigenic differences at a second locus.While these major teratocarcinoma transplantation rejection loci determine the acceptance or rejection of a tumor by a mouse injected with high doses of tumor tissue (750 g of tumor protein), evidence is presented for a number of minor genetic factors that can (1) affect the efficiency of tumor rejection and (2) cause complete tumor rejection at lower tumor doses (7.5–75 g of tumor protein).  相似文献   

12.
C3H lymph node cell (LNC) grafts, but not bone marrow cell (BMC) grafts, were resisted by lethally irradiated NZB, (C57BL × NZB)F1, and (C57BL/6 × DBA/2)F1 mice. BALB/ c hosts did not resist C3H LNC, suggesting that Ir-like genes regulate resistance to such grafts. Cyclophosphamide, silica particles, and 89Sr pretreatments of prospective host mice resulted in successful proliferation of C3H LNC in most instances. These agents were known to abrogate resistance to incompatible BMC grafts. The determinants for antigens recognized on LNC appear to map in or near the D region of H-2. LNC grafts of all H-2k strains tested (C3H, CBA, C58, C57BR) were strongly resisted while A, C3H.A, B10.A(5R), A.TL, and A.Tlab LNC grafts were not strongly resisted by NZB hosts. Grafts of H-2b (C57BL/6, C57BL/10, 129) LNC, or BMC are resisted by NZB or (C57BL/6 × DBA/2)F1 hosts. (C3H × C57BL)F1 LNC but not BMC were resisted by similar hosts. (C57BL/6 × DBA/2)F1 mice were injected with C57BL/6 spleen cells four times to induce specific “unresponsiveness” to parental-strain Hemopoietic histocompatibility (Hh) antigens. Unresponsiveness was induced to C57BL/6 BMC, as expected, but C57BL/6 and C3H LNC grafts were resisted despite the spleen cell injections. The data suggest that the antigens recognized during rejection of C3H LNC are not expressed on C3H BMC. It is even conceivable that Hh antigens on C57BL/6 BMC and LNC have separate determinants. Alternatively, the injections of C57BL/6 spleen cells may have induced an anti-idiotypic response that was capable of eliminating C57BL/6 LNC by a different effector mechanism.  相似文献   

13.
Female mice of 12 inbred strains were exposed to 20–25 cercariae of Schistosoma japonicum and infection status determined at day 40 by counting numbers of adult worms, eggs in faeces and eggs in a segment of liver. Most mouse strains appeared to be ‘permissive’ hosts although at least one strain (129/J) was shown to be relatively resistant in terms of day 40 adult worm numbers. In a radioisotopic lung assay for sensitivity to eggs, and developed as a rapid means of assessing granuloma formation, CBA/H mice were shown to differ from C57BL/6 mice in being non-responders. Histological examination of lungs of sensitized CBA/H and C57BL/6 mice injected intravenously with eggs established that granuloma formation was much more intense in C57BL/6 than CBA/H mice. Preliminary indications are that infected CBA/H mice are also low anti egg circumoval precipitin (COP) responders. Analysis of immune responses to isolated egg antigens in these two strains, and identification of the antigens of eggs to which such responses are directed in C57BL/6 mice, should provide insights into immunological disease processes (such as granulomatous inflammation) in this model system of japonicum schistosomiasis.  相似文献   

14.
 Tumor-associated T cell epitopes are recognized by T cells in the context of determinants specified by class I loci. Since the rejection of foreign histocompatibility antigens is known to enhance tumor immunity, immunization with a cellular vaccine that combined the expression of both syngeneic and allogeneic class I determinants could have important immunological advantages over a vaccine that expressed either syngeneic or allogeneic determinants alone. To investigate this question in a mouse melanoma model system, we tested the immunotherapeutic properties of B16 melanoma × LM fibroblast hybrid cells in C57BL/6J mice with melanoma. Like C57BL/6J mice, B16 cells expressed H-2Kb class I determinants and (antibody-defined) melanoma-associated antigens. LM cells, of C3H mouse origin, formed H-2Kk determinants along with B7.1, a co-stimulatory molecule that can activate T cells. The B16 × LM hybrid cells co-expressed H-2Kb and H-2Kk class I determinants, B7.1 and the melanoma-associated antigens. C57BL/6J mice with melanoma, immunized with the semi-allogeneic hybrid cells, developed CD8-mediated melanoma immunity and survived significantly (P<0.005) longer than mice with melanoma immunized with a mixture of the parental cell types. The failure of melanoma immunity to develop in mice injected with the mixture of parental cells indicated that co-expression of the immunogenic determinants by the same cellular immunogen was necessary for an optimum immunotherapeutic effect. Augmented immunity to melanoma in mice immunized with the semi-allogeneic hybrid cells points toward an analogous form of therapy for patients with melanoma. Received: 19 May 1997 / Accepted: 23 July 1997  相似文献   

15.
We have characterized in vivo and in vitro responses of mice to the BALB/c-derived carcinoma, C26. BALB/c mice were highly susceptible, in a dose-dependent fashion, to local tumor development following subcutaneous injection of C26. Other strains of mice, including allogeneic strains and major histocompatibility complex compatible strains of different minor histocompatibility (H) backgrounds, were resistant to C26-induced tumors. The basis for resistance of mice to C26 was studied using an in vitro-derived C26 line as target cells in microcytotoxicity assays, and as a source of antigen for in vivo priming. An H-2d-specific alloreactive cytotoxic T lymphocyte (CTL) line was isolated from C57BL/6 mice primed with C26, demonstrating the expression, and immune recognition, of MHC class I antigens on C26. C26 also expressed minor H antigens of BALB background as demonstrated by the ability of CTL specific for BALB minor H antigens to selectively lyse C26. Conversely, minor H antigens on C26 were immunogenic across a minor H barrier as demonstrated by the ability to raise anti-minor H CTL to C26 from minor H disparate strains. Collectively, those experiments indicate that C26 may be useful for immunologic and biochemical studies of murine minor H antigens, and for in vivo and in vitro studies of local immunity.  相似文献   

16.
Infection of the central nervous system (CNS) with Theiler's murine encephalomyelitis virus (TMEV) induces an immune-mediated demyelinating disease in susceptible mouse strains such as SJL/J (H-2(s)) but not in strains such as C57BL/6 (H-2(b)). In addition, it has been shown that (C57BL/6 × SJL/J)F1 mice (F1 mice), which carry both resistant and susceptible MHC haplotypes (H-2(b/s)), are resistant to both viral persistence and TMEV-induced demyelinating disease. In this study, we further analyzed the immune responses underlying the resistance of F1 mice. Our study shows that the resistance of F1 mice is associated with a higher level of the initial virus-specific H-2(b)-restricted CD8(+) T cell responses than of the H-2(s)-restricted CD8(+) T cell responses. In contrast, pathogenic Th17 responses to viral epitopes are lower in F1 mice than in susceptible SJL/J mice. Dominant effects of resistant genes expressed in antigen-presenting cells of F1 mice on regulation of viral replication and induction of protective T cell responses appear to play a crucial role in disease resistance. Although the F1 mice are resistant to disease, the level of viral RNA in the CNS was intermediate between those of SJL/J and C57BL/6 mice, indicating the presence of a threshold of viral expression for pathogenesis.  相似文献   

17.
Recent reports suggested a correlation between decreased expression of tumor cell MHC class I Ag and increased susceptibility to NK cells. These studies led to the hypothesis that tumor cells displaying reduced levels of MHC class I Ag have reduced tumorigenicity in vivo because they are eliminated from the host by endogenous NK cells. The present studies use the murine hepatoma BW7756 and a spontaneous H-2Kb loss variant, Hepa-1, to test this hypothesis. The parental BW7756 tumor is highly malignant in syngeneic C57L/J hosts while Hepa-1 cells do not give rise to tumors, suggesting that the loss of H-2Kb Ag expression correlates with decreased tumorigenicity and NK susceptibility. Hepa-1 cells were therefore transfected with an H-2Kb gene to generate H-2Kb Ag expressing clones. The resulting clones were tested for tumorigenicity. Syngeneic or NK-deficient C57BL/6-beige/beige mice challenged with Hepa-1 or the H-2Kb transfectants rejected the cells, suggesting that reexpression of H-2Kb Ag does not restore tumorigenicity and that NK cells are not involved in Hepa-1 rejection. In vitro H-2Kb Ag-negative and -positive Hepa-1 cells are equally susceptible to tilorone-boosted NK cells, indicating that MHC class I Ag expression also does not affect in vitro NK susceptibility. Tumor challenged athymic nude and sublethally irradiated syngeneic mice develop tumors demonstrating that T cells are probably responsible for rejection of the Hepa-1 tumor, and that H-2Kb Ag expression has no effect on rejection. Inasmuch as the expression of H-2Kb Ag on Hepa-1 cells does not effect tumorigenicity or in vitro NK susceptibility, the previously reported association between reduced MHC class I Ag levels and increased NK susceptibility is not universally applicable.  相似文献   

18.
Programmed death-ligand (PD-L)1 and PD-L2, newer B7 superfamily members, are implicated in the negative regulation of immune responses and peripheral tolerance. To examine their function in alloimmunity, we used the murine model of orthotopic corneal transplantation. We demonstrate that PD-L1, but not PD-L2, is constitutively expressed at high levels by the corneal epithelial cells, and at low levels by corneal CD45+ cells in the stroma, whereas it is undetectable on stromal fibroblasts and corneal endothelial cells. Inflammation induces PD-L1 up-regulation by corneal epithelial cells, and infiltration of significant numbers of PD-L1+CD45+CD11b+ cells. Blockade with anti-PD-L1 mAb dramatically enhances rejection of C57BL/6 corneal allografts by BALB/c recipients. To examine the selective contribution of donor vs host PD-L1 in modulating allorejection, we used PD-L1-/- mice as hosts or donors of combined MHC and minor H-mismatched corneal grafts. BALB/c grafts placed in PD-L1-/- C57BL/6 hosts resulted in pronounced T cell priming in the draining lymph nodes, and universally underwent rapid rejection. Allografts from PD-L1-/- C57BL/6 donors were also significantly more susceptible to rejection than wild-type C57BL/6 grafts placed into BALB/c hosts, primarily as a result of increased T cell infiltration rather than enhanced priming. Taken together, our results identify differential roles for recipient vs donor PD-L1 in regulating induction vs effector of alloimmunity in corneal grafts, the most common form of tissue transplantation, and highlight the importance of peripheral tissue-derived PD-L1 in down-regulating local immune responses.  相似文献   

19.
20.
Classic studies on C57BL-derived mouse strains showed that they were resistant to mouse mammary tumor virus (MMTV) infection. Although one form of resistance mapped to the major histocompatibility complex (MHC) locus, at least one other, unknown gene was implicated in this resistance. We show here that B10.BR mice, which are derived from C57BL mice but have the same MHC locus (H-2k) as susceptible C3H/HeN mice, are resistant to MMTV, and show a lack of virus spread in their lymphoid compartments but not their mammary epithelial cells. Although in vivo virus superantigen (Sag)-mediated activation of T cells was similar in C3H/HeN and B10.BR mice, T cell-dependent B-cell and dendritic cell activation was diminished in the latter. Ex vivo, B10.BR T cells showed a diminished capacity to proliferate in response to the MMTV Sag. The genetic segregation of the resistance phenotype indicated that it maps to a single allele. These data highlight the role of Sag-dependent T-cell responses in MMTV infection and point to a novel mechanism for the resistance of mice to retroviral infection that could lead to a better understanding of the interplay between hosts and pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号