首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guard cells generate reactive oxygen species (ROS) in response to abscisic acid (ABA), which leads to stomatal closing. The upstream steps of the ABA-induced ROS generation pathway remain largely unknown. In animal cells, ROS generation in neutrophils is activated by phosphatidylinositol 3-phosphate (PI3P). Stomatal guard cells contain PI3P and PI 3-kinase activity. In this study, we tested whether PI3P has a role in ROS generation in guard cells exposed to ABA. We found that PI 3-kinase inhibitors wortmannin or LY294002 inhibited ABA-induced ROS generation and stomatal closing. Endosome-binding domain (of human EEA1), which specifically binds to PI3P, also inhibited ABA-induced ROS generation and stomatal closing when overexpressed in guard cells. Hydrogen peroxide partially reversed the effects of wortmannin or LY294002 on ABA-induced stomatal closing. These results support a role for PI3P in ABA-induced ROS generation and stomatal closing movement.  相似文献   

2.
Phosphatidylinositol 3-kinases (PtdIns 3-kinases) that produce phosphatidylinositol (3,4,5) triphosphate (PtdIns(3,4,5)P3) are considered to be important regulators of actin dynamics in animal cells. In plants, neither PtdIns(3,4,5)P3 nor the enzyme that produces this lipid has been reported. However, a PtdIns 3-kinase that produces phosphatidylinositol 3-phosphate (PtdIns3P) has been identified, suggesting that PtdIns3P, instead of PtdIns(3,4,5)P3, regulates actin dynamics in plant cells. Phosphatidylinositol 4-kinase (PtdIns 4-kinase) is closely associated with the actin cytoskeleton in plant cells, suggesting a role for this lipid kinase and its product phosphatidylinositol 4-phosphate (PtdIns4P) in actin-related processes. Here, we investigated whether or not PtdIns3P or PtdIns4P plays a role in actin reorganization induced by a plant hormone abscisic acid (ABA) in guard cells of day flower ( Commelina communis ). ABA-induced changes in actin filaments were inhibited by LY294002 (LY) and wortmannin (WM), inhibitors of PtdIns3P and PtdIns4P synthesis. Expression of PtdIns3P- and PtdIns4P-binding domains also inhibited ABA-induced actin reorganization in a manner similar to LY and WM. These results suggest that PtdIns3P and PtdIns4P regulate actin dynamics in guard cells. Furthermore, we demonstrate that PtdIns3P exerts its effect on actin dynamics, at least in part, via generation of reactive oxygen species (ROS) in response to ABA.  相似文献   

3.
Rice leaves produce H2O2 in response to abscisic acid (ABA), which results in induction of senescence and accumulation of NH4+. The upstream steps of the ABA-induced H2O2 production pathway in rice leaves remain largely unclear. In animal cells, H2O2 production in neutrophils is activated by phosphatidylinositol 3-phosphate (PI3P), a product of phosphatidylinositol 3-knase (PI3K). In the present study, we examined whether PI3P plays a role in H2O2 production in rice leaves exposed to ABA. We found that PI3K inhibitors LY 294002 (LY) or wortmannin (WM) inhibited ABA-induced H2O2 production, senescence and NH4+ accumulation. Hydrogen peroxide almost completely rescued the inhibitory effect of LY or WM. It appears that PI3P plays a role in ABA-induced H2O2 production, senescence, and NH4+ accumulation in rice leaves.  相似文献   

4.
马敏  刘艾京  胡洁  贺军民 《植物学报》2015,50(5):583-590
以蚕豆(Vicia faba)表皮条为材料, 利用磷脂酰肌醇3-激酶(PI3K)的抑制剂沃曼青霉素(WM)和LY294002 (LY)抑制磷脂酰肌醇3-磷酸(PI3P)的形成, 并结合气孔开度分析及激光扫描共聚焦显微镜技术, 探讨暗诱导蚕豆气孔关闭过程中PI3P与过氧化氢(H2O2)和一氧化氮(NO)之间的相互关系。结果表明, WM和LY显著抑制暗诱导的保卫细胞H2O2和NO的形成以及气孔的关闭, 但不能抑制外源H2O2和NO诱导的气孔关闭, 外源H2O2和NO处理能完全逆转WM和LY对暗诱导的气孔关闭的抑制效应。实验结果暗示, 在暗诱导的气孔关闭的信号转导途径中PI3P在信号分子H2O2和NO的上游起作用。  相似文献   

5.
Methyl jasmonate (MeJA) elicits stomatal closing similar to abscisic acid (ABA), but whether the two compounds use similar or different signaling mechanisms in guard cells remains to be clarified. We investigated the effects of MeJA and ABA on second messenger production and ion channel activation in guard cells of wild-type Arabidopsis (Arabidopsis thaliana) and MeJA-insensitive coronatine-insensitive 1 (coi1) mutants. The coi1 mutation impaired MeJA-induced stomatal closing but not ABA-induced stomatal closing. MeJA as well as ABA induced production of reactive oxygen species (ROS) and nitric oxide (NO) in wild-type guard cells, whereas MeJA did not induce production of ROS and NO in coi1 guard cells. The experiments using an inhibitor and scavengers demonstrated that both ROS and NO are involved in MeJA-induced stomatal closing as well as ABA-induced stomatal closing. Not only ABA but also MeJA activated slow anion channels and Ca(2+) permeable cation channels in the plasma membrane of wild-type guard cell protoplasts. However, in coi1 guard cell protoplasts, MeJA did not elicit either slow anion currents or Ca(2+) permeable cation currents, but ABA activated both types of ion channels. Furthermore, to elucidate signaling interaction between ABA and MeJA in guard cells, we examined MeJA signaling in ABA-insensitive mutant ABA-insensitive 2 (abi2-1), whose ABA signal transduction cascade has some disruption downstream of ROS production and NO production. MeJA also did not induce stomatal closing but stimulated production of ROS and NO in abi2-1. These results suggest that MeJA triggers stomatal closing via a receptor distinct from the ABA receptor and that the coi1 mutation disrupts MeJA signaling upstream of the blanch point of ABA signaling and MeJA signaling in Arabidopsis guard cells.  相似文献   

6.
Hwang JU  Lee Y 《Plant physiology》2001,125(4):2120-2128
In guard cells of open stomata under daylight, long actin filaments are arranged at the cortex, radiating out from the stomatal pore. Abscisic acid (ABA), a signal for stomatal closure, induces rapid depolymerization of cortical actin filaments and the slower formation of a new type of actin that is randomly oriented throughout the cell. This change in actin organization has been suggested to be important in signaling pathways involved in stomatal closing movement, since actin antagonists interfere with normal stomatal closing responses to ABA. Here we present evidence that the actin changes induced by ABA in guard cells of dayflower (Commelina communis) are mediated by cytosolic calcium levels and by protein phosphatase and protein kinase activities. Treatment of guard cells with CaCl2 induced changes in actin organization similar to those induced by ABA. Removal of extracellular calcium with EGTA inhibited ABA-induced actin changes. These results suggest that Ca2+ acts as a signal mediator in actin reorganization during guard cell response to ABA. A protein kinase inhibitor, staurosporine, inhibited actin reorganization in guard cells treated with ABA or CaCl2, and also increased the population of cells with long radial cortical actin filaments in untreated control cells. A protein phosphatase inhibitor, calyculin A, induced fragmentation of actin filaments in ABA- or CaCl2-treated cells and in control cells, and inhibited the formation of randomly oriented long actin filaments induced by ABA or CaCl2. These results suggest that protein kinase(s) and phosphatase(s) participate in actin remodeling in guard cells during ABA-induced stomatal closure.  相似文献   

7.
Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are important signalling agents in both animals and plants. In plants, G proteins modulate numerous responses, including abscisic acid (ABA) and pathogen-associated molecular pattern (PAMP) regulation of guard cell ion channels and stomatal apertures. Previous analyses of mutants deficient in the sole canonical Arabidopsis Gα subunit, GPA1, have shown that Gα-deficient guard cells are impaired in ABA inhibition of K(+) influx channels, and in pH-independent activation of anion efflux channels. ABA-induced Ca(2+) uptake through ROS-activated Ca(2+)-permeable channels in the plasma membrane is another key component of ABA signal transduction in guard cells, but the question of whether these channels are also dependent on Gα for their ABA response has not been evaluated previously. We used two independent Arabidopsis T-DNA null mutant lines, gpa1-3 and gpa1-4, to investigate this issue. We observed that gpa1 mutants are disrupted both in ABA-induced Ca(2+)-channel activation, and in production of reactive oxygen species (ROS) in response to ABA. However, in response to exogenous H(2)O(2) application, I(Ca) channels are activated normally in gpa1 guard cells. In addition, H(2)O(2) inhibition of stomatal opening and promotion of stomatal closure are not disrupted in gpa1 mutant guard cells. These data indicate that absence of GPA1 interrupts ABA signalling between ABA reception and ROS production, with a consequent impairment in Ca(2+)-channel activation.  相似文献   

8.
Previously, we demonstrated that a protein that binds phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] inhibits both light-induced stomatal opening and ABA-induced stomatal closing. The latter effect is due to a reduction in free PtdIns(4,5)P(2), decreasing production of inositol 1,4,5-trisphosphate and phosphatidic acid by phospholipases C and D. However, it is less clear how PtdIns(4,5)P(2) modulates stomatal opening. We found that in response to white light irradiation, the PtdIns(4,5)P(2)-binding domain GFP:PLCdelta1PH translocated from the cytosol into the plasma membrane. This suggests that the level of PtdIns(4,5)P(2) increases at the plasma membrane upon illumination. Exogenously administered PtdIns(4,5)P(2) substituted for light stimuli, inducing stomatal opening and swelling of guard cell protoplasts. To identify PtdIns(4,5)P(2) targets we performed patch-clamp experiments, and found that anion channel activity was inhibited by PtdIns(4,5)P(2). Genetic analyses using an Arabidopsis PIP5K4 mutant further supported the role of PtdIns(4,5)P(2) in stomatal opening. The reduced stomatal opening movements exhibited by a mutant of Arabidopsis PIP5K4 (At3g56960) was countered by exogenous application of PtdIns(4,5)P(2). The phenotype of reduced stomatal opening in the pip5k4 mutant was recovered in lines complemented with the full-length PIP5K4. Together, these data suggest that PIP5K4 produces PtdIns(4,5)P(2) in irradiated guard cells, inhibiting anion channels to allow full stomatal opening.  相似文献   

9.
Recent evidence suggests that nitric oxide (NO) acts as an intermediate of ABA signal transduction for stomatal closure. However, NO's effect on stomatal opening is poorly understood even though both opening and closing activities determine stomatal aperture. Here we show that NO inhibits stomatal opening specific to blue light, thereby stimulating stomatal closure. NO inhibited blue light-specific stomatal opening but not red light-induced opening. NO inhibited both blue light-induced H(+) pumping and H(+)-ATPase phosphorylation. The NO scavenger 2-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) restored all these inhibitory effects. ABA and hydrogen peroxide (H(2)O(2)) inhibited all of these blue light-specific responses in a manner similar to NO. c-PTIO partially restored the ABA-induced inhibition of all of these opening responses but did not restore inhibition of the responses by H(2)O(2). ABA, H(2)O(2) and NO had slight inhibitory effects on the phosphorylation of phototropins, which are blue light receptors in guard cells. NO inhibited neither fusicoccin-induced H(+) pumping in guard cells nor H(+) transport by H(+)-ATPase in the isolated membranes. From these results, we conclude that both NO and H(2)O(2) inhibit blue light-induced activation of H(+)-ATPase by inhibiting the component(s) between phototropins and H(+)-ATPase in guard cells and stimulate stomatal closure by ABA.  相似文献   

10.
11.
Elevations in cytoplasmic calcium ([Ca(2)+](cyt)) are an important component of early abscisic acid (ABA) signal transduction. To determine whether defined mutations in ABA signal transduction affect [Ca(2)+](cyt) signaling, the Ca(2)+-sensitive fluorescent dye fura 2 was loaded into the cytoplasm of Arabidopsis guard cells. Oscillations in [Ca(2)+](cyt) could be induced when the external calcium concentration was increased, showing viable Ca(2)+ homeostasis in these dye-loaded cells. ABA-induced [Ca(2)+](cyt) elevations in wild-type stomata were either transient or sustained, with a mean increase of approximately 300 nM. Interestingly, ABA-induced [Ca(2)+](cyt) increases were significantly reduced but not abolished in guard cells of the ABA-insensitive protein phosphatase mutants abi1 and abi2. Plasma membrane slow anion currents were activated in wild-type, abi1, and abi2 guard cell protoplasts by increasing [Ca(2)+](cyt), demonstrating that the impairment in ABA activation of anion currents in the abi1 and abi2 mutants was bypassed by increasing [Ca(2)+](cyt). Furthermore, increases in external calcium alone (which elevate [Ca(2)+](cyt)) resulted in stomatal closing to the same extent in the abi1 and abi2 mutants as in the wild type. Conversely, stomatal opening assays indicated different interactions of abi1 and abi2, with Ca(2)+-dependent signal transduction pathways controlling stomatal closing versus stomatal opening. Together, [Ca(2)+](cyt) recordings, anion current activation, and stomatal closing assays demonstrate that the abi1 and abi2 mutations impair early ABA signaling events in guard cells upstream or close to ABA-induced [Ca(2)+](cyt) elevations. These results further demonstrate that the mutations can be bypassed during anion channel activation and stomatal closing by experimental elevation of [Ca(2)+](cyt).  相似文献   

12.
Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca(2+) increases and ABA- activation of plasma membrane Ca(2+)-permeable channels in guard cells. Exogenous H(2)O(2) rescues both Ca(2+) channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction.  相似文献   

13.
14.
Choi EK  Park HJ  Ma JS  Lee HC  Kang HC  Kim BG  Kang IC 《FEBS letters》2004,559(1-3):141-144
The effects of LY294002 (LY29) and wortmannin (WM), inhibitors of phosphatidylinositol 3-kinase (PI3K), on monocyte chemoattractant protein-1 (MCP-1) expression by human umbilical vein endothelial cells were investigated. Complete inhibition of interleukin (IL)-1beta-induced Akt phosphorylation occurred at 50 microM LY29 or 100 nM WM. At these concentrations, LY29, but not WM, significantly inhibited constitutive and IL-1beta-induced MCP-1 expression at both protein and mRNA levels. LY303511 (LY30), an inactive analogue of LY29, also inhibited MCP-1 expression. LY29 and LY30 inhibited activation of nuclear factor-kappaB (NF-kappaB). These results suggest that LY29 inhibits MCP-1 expression at least in part via suppression of NF-kappaB, independent of PI3K, and the structure of LY29 and LY30 may be a novel template for development of new anti-inflammatory drugs.  相似文献   

15.
An antiparallel-directed potassium transport between subsidiary cells and guard cells which form the graminean stomatal complex has been proposed to drive stomatal movements in maize. To gain insights into the coordinated shuttling of K(+) ions between these cell types during stomatal closure, the effect of ABA on the time-dependent K(+) uptake and K(+) release channels as well as on the instantaneously activating non-selective cation channels (MgC) was examined in subsidiary cells. Patch-clamp studies revealed that ABA did not affect the MgC channels but differentially regulated the time-dependent K(+) channels. ABA caused a pronounced rise in time-dependent outward-rectifying K(+) currents (K(out)) at alkaline pH and decreased inward-rectifying K(+) currents (K(in)) in a Ca(2+)-dependent manner. Our results show that the ABA-induced changes in time-dependent K(in) and K(out) currents from subsidiary cells are very similar to those previously described for guard cells. Thus, the direction of K(+) transport in subsidiary cells and guard cells during ABA-induced closure does not seem to be grounded solely on the cell type-specific ABA regulation of K(+) channels.  相似文献   

16.
Abscisic acid (ABA) regulates vital physiological responses, and a number of events in the ABA signaling cascade remain to be identified. To allow quantitative analysis of genetic signaling mutants, patch-clamp experiments were developed and performed with the previously inaccessible Arabidopsis guard cells from the wild type and ABA-insensitive (abi) mutants. Slow anion channels have been proposed to play a rate-limiting role in ABA-induced stomatal closing. We now directly demonstrate that ABA strongly activates slow anion channels in wild-type guard cells. Furthermore, ABA-induced anion channel activation and stomatal closing were suppressed by protein phosphatase inhibitors. In abi1-1 and abi2-1 mutant guard cells, ABA activation of slow anion channels and ABA-induced stomatal closing were abolished. These impairments in ABA signaling were partially rescued by kinase inhibitors in abi1 but not in abi2 guard cells. These data provide cell biological evidence that the abi2 locus disrupts early ABA signaling, that abi1 and abi2 affect ABA signaling at different steps in the cascade, and that protein kinases act as negative regulators of ABA signaling in Arabidopsis. New models for ABA signaling pathways and roles for abi1, abi2, and protein kinases and phosphatases are discussed.  相似文献   

17.
The role of nitric oxide (NO) during bicarbonate-induced stomatal closure was studied in the abaxial epidermis of Pisum sativum . A few experiments were done with 10 μ M ABA, for comparison. The presence of 2 m M sodium bicarbonate or 10 μ M ABA induced an increase of NO in guard cells. Elevation of NO by sodium nitroprusside induced stomatal closure and enhanced further the closure by bicarbonate. The bicarbonate induced increase in NO of guard cells, or stomatal closure was prevented partially by 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide, an NO scavenger and N -nitro- l -Arg-methyl ester, an inhibitor of NO synthase (NOS). These results suggested that guard cells generated NO on exposure to bicarbonate and that NOS was involved at least partially in such NO production. Time course experiments revealed that on exposure to bicarbonate or ABA, the rise in guard cell NO production peaked within 10 min. Experiments using pharmacological compounds like wortmannin/LY294002 (phosphatidylinositol 3 kinase inhibitors), 1 H -(1,2,4)-oxadiazole-[4,3 a ]quinoxalin-1-one (guanylyl cyclase inhibitor), nicotinamide (cyclic adenosine diphosphate ribose antagonist), guanosine 5'-O-(2-thiodiphosphate) (G-protein antagonist) suggested a role of phosphatidylinositol 3-phosphate or G-proteins during bicarbonate-induced stomatal closure.  相似文献   

18.
Phospholipase D (PLD), phosphatidylinositol 3-kinase (PI3K), and Akt are known to be involved in cellular signaling related to proliferation and cell survival. In this report, we provide evidence that PLD links sphingosine 1-phosphate (S1P)-induced activation of the G protein-coupled EDG3 receptor to stimulation of PI3K and its downstream effector Akt in Chinese hamster ovary (CHO) cells. S1P stimulation of EDG3-overexpressing CHO cells but not vector-transfected cells induced activation of PLD, PI3K, and Akt in a time- and dose-dependent manner. Akt phosphorylation was prevented by the PI3K inhibitors wortmannin and LY294002 (2-(4-monrpholinyl)-8-phenyl-4H-1-benzopyran-4-one), indicating that Akt activation was dependent on PI3K. S1P-induced activation of PI3K and Akt was abrogated by 1-butanol, which inhibited S1P-induced accumulation of phosphatidic acid by serving as a phosphatidyl group acceptor in the transphosphatidylation reaction catalyzed by PLD, whereas both PI3K and Akt activation were not inhibited by 2-butanol without such reaction. Co-expression of wild-type PLD2 with myc-Akt resulted in increased Akt activation in response to S1P. In contrast, co-expression of a catalytically inactive mutant of PLD2 eliminated the S1P-induced Akt activation. The treatment of EDG3-expressing CHO cells with exogenous Streptomyces chromofuscus PLD, which caused an accumulation of phosphatidic acid, resulted in increases in PI3K activity and the phosphorylation of Akt, the latter of which was completely abolished by LY294002. Furthermore, S1P-induced membrane ruffling, which was dependent on PI3K and Rac, was inhibited by 1-butanol, but not by 2-butanol. These results demonstrate that PLD participates in the activation of PI3K and Akt stimulation of EDG3 receptor.  相似文献   

19.
In this study, we examined the involvement of endogenous abscisic acid (ABA) in methyl jasmonate (MeJA)-induced stomatal closure using an inhibitor of ABA biosynthesis, fluridon (FLU), and an ABA-deficient Arabidopsis (Arabidopsis thaliana) mutant, aba2-2. We found that pretreatment with FLU inhibited MeJA-induced stomatal closure but not ABA-induced stomatal closure in wild-type plants. The aba2-2 mutation impaired MeJA-induced stomatal closure but not ABA-induced stomatal closure. We also investigated the effects of FLU and the aba2-2 mutation on cytosolic free calcium concentration ([Ca(2+)](cyt)) in guard cells using a Ca(2+)-reporter fluorescent protein, Yellow Cameleon 3.6. In wild-type guard cells, FLU inhibited MeJA-induced [Ca(2+)](cyt) elevation but not ABA-induced [Ca(2+)](cyt) elevation. The aba2-2 mutation did not affect ABA-elicited [Ca(2+)](cyt) elevation but suppressed MeJA-induced [Ca(2+)](cyt) elevation. We also tested the effects of the aba2-2 mutation and FLU on the expression of MeJA-inducible VEGETATIVE STORAGE PROTEIN1 (VSP1). In the aba2-2 mutant, MeJA did not induce VSP1 expression. In wild-type leaves, FLU inhibited MeJA-induced VSP1 expression. Pretreatment with ABA at 0.1 μm, which is not enough concentration to evoke ABA responses in the wild type, rescued the observed phenotypes of the aba2-2 mutant. Finally, we found that in wild-type leaves, MeJA stimulates the expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE3, which encodes a crucial enzyme in ABA biosynthesis. These results suggest that endogenous ABA could be involved in MeJA signal transduction and lead to stomatal closure in Arabidopsis guard cells.  相似文献   

20.
Warashina A 《Cell calcium》2001,29(4):239-247
The effects of wortmannin and LY294002, inhibitors of PI(3)-kinase, in secretagogue-stimulated rat adrenal chromaffin cells loaded with Calcium Green-1 were studied by simultaneously measuring changes in the fluorescence intensity of the indicator (Ca-response) and in the release of catecholamine (secretory response). Before application of these agents, the profile of the secretory response evoked by a 10-min stimulation with 30 mM K(+)] was approximated by the k th (2.6 on average) power of that of the Ca-response. Both agents dose-dependently inhibited the high-K(+)-elicited Ca-response and secretory response in a similar mode to which the k th power relation was preserved despite the occurrence of profound changes in the shapes and sizes of these two responses. The L-type Ca(2+)-channel blocker PN200-110 inhibited the high-K(+)-evoked responses in a similar fashion. Thus, it is likely that wortmannin and LY294002 inhibit high-K(+)-evoked CA secretion by inhibiting a Ca(2+)-influx through voltage-dependent Ca(2+)channels. Although regulation of L-type Ca(2+)channel activity via PI(3)-kinase has been reported in vascular myocytes, this possibility may be limited in the present case since the doses of LY294002 and wortmannin used to inhibit the secretory response are much higher than IC(50)'s for inhibition of PI(3)-kinase with these agents. Compared with the high-K(+)-elicited responses, muscarine-evoked Ca-responses and secretory responses were more strongly inhibited by wortmannin, but less affected by LY294002. The differential effects suggest that the inhibition of the muscarine-evoked secretion by these agents i s not associated with the inhibition of PI(3)-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号