首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic cooperation is a form of cell communication in which the mutant phenotype of enzyme deficient cells, as determined by incorporation of labeled substrates, is corrected in culture by contact with normal cells. Previous studies showed that metabolic cooperation between normal and hypoxanthine phosphoribosyl transferase deficient cells (HPRT?) was the result of transfer of product of the enzyme, nucleotide or nucleotide derivative, from normal to mutant cells rather than transfer of enzyme or informational macromolecules leading to the synthesis of the enzyme. In the present study the nature and mechanisms involved in these cell interactions were investigated. Effective communication is observed within one hour of cell contact. Modifications of the extracellular environment including changes in osmolarity, concentration of sodium and divalent ions failed to interfere significantly with transfer. Changes of cell shape induced by cyclic nucleotides, hormones and urea also did not affect communication. Cytochalasin B which dissociates microfilaments and binds to cell membranes reduced metabolic cooperation while colcemide which dissociates microtubules had little effect. Enzymatic oxidation and iodination of cell surface structures abolished metabolic cooperation. The subcellular localization of label in donor cells is important in determining efficiency of transfer. Metabolic cooperation is efficient when radioactive label is primarily located in the nucleus and inefficient if the label is cytoplasmic. Cell lines previously classified as “non-communicating” because they lack gap junctions, ionic coupling and metabolic cooperation were shown in the present study to communicate when incubated with labeled substrates for 20 hours rather than 3. Cell communication is a more generalized phenomenon among cells in contact than previously appreciated.  相似文献   

2.
The mechanisms of action of 9-(tetrahydro-2-furyl)-6-mercaptopurine (THFMP) have been studied in Chinese hamster ovary (CHO) cells in tissue culture. THFMP is relatively unstable in physiological buffers, being facilely converted to 6-mercaptopurine (6-MP) even in the absence of cells. Consequently, THFMP undergoes metabolic conversions characteristic of 6-MP, namely formation of 6-thioIMP and incorporation into DNA as 6-thioguanine (6-TG) nucleotide. A number of purines are capable of preventing the toxicity of THFMP in wild-type cells in a manner similar to that of 6-MP. However, exogenous purines and pyrimidines did not prevent the toxicity of THFMP to cells deficient in the enzyme, hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8; HGPRTase). Cells lacking HGPRTase were 20–40-fold resistant to 6-TG and 6-MP but were only 2–4-fold resistant to THFMP. Furthermore, the time-course for killing CHO cells deficient in HGPRTase was different from that in wild-type cells containing the enzyme. There was no apparent effect of THFMP on the utilization of precursors for DNA, RNA or protein synthesis in the enzyme-deficient mutant cell line. The results suggest that THFMP is converted non-enzymatically to 6-MP and shares its mechanisms of action in wild-type cells containing HGPRTase, i.e., inhibition of de novo purine biosynthesis and incorporation into DNA as 6-TG nucleotide. However, the mechanism of action of THFMP in cells lacking HGPRTase is probably unique and is presently unknown.  相似文献   

3.
Studies on cell communication with enucleated human fibroblasts   总被引:2,自引:0,他引:2       下载免费PDF全文
Metabolic cooperation, the correction of the mutant phenotype in cells deficient in hypoxanthine phosphoribosyltransferase (HPRT-) by intimate contact with normal cells (HPRT+), represents a form of cell communication that is easily studied with radioautography. In the present study it was found that the formation of cell junctions needed for communication does not require protein synthesis nor is it under the immediate control of the cell nucleus. Enucleated normal cells efficiently communicate with HPRT- mutant cells. The effectiveness of enucleated cells as donors in metabolic cooperation provides evidence that it is the transfer of small molecules, nucleotide, or nucleotide derivatives that is responsible for correction of the mutant phenotype. Karyoplasts (nuclei with small amounts of cytoplasm surrounded by a plasma membrane) are unable to efficiently communicate with intact cells. The utilization of [3H]hypoxanthine by communicating mixtures of HPRT+ and HPRT- human cells is not significantly different than in the normal cells alone. Metabolic cooperation, as studied involves a redistribution of purine-containing compounds among communicating cells.  相似文献   

4.
A new method making use of a radiochemical enzyme assay at the single cell level is presented to investigate metabolic cooperation, a widely studied form of cellular communication. In this case metabolic cooperation between normal human fibroblasts and fibroblasts derived from a patient deficient for the enzyme hypoxanthine-guanine phosphoribosyl transferase has been studied.A mixture of an equal number of both cell types was cultured in close physical contact and after trypsinisation, replating and culturing the cells for several hours in a high dilution, quantitative enzyme measurements with individual cells isolated from the mixture were carried out. From the distribution curve of the enzyme activities of the individual cells the conclusion could be drawn that a macromolecule, either the enzyme itself or DNA or mRNA, coding for that enzyme, is transferred from normal to mutant cells.  相似文献   

5.
We have developed a method of relating changes in hypoxanthine guanine phosphoribosyl transferase (HGPRTase) activity to the rate of phosphoribosyl pyrophosphate (PRPP) synthesis in isolated cell lines and in co-cultures of different cell lines. Using this approach, we have determined the response of the HGPRTase activity of communication-competent and communication-incompetent cells to changes in PRPP content. The HGPRTase activity of HGPRT+ communication-competent NS cells responds to changes of their own PRPP level, as well as to changes of the PRPP level of HGPRT- cells with which they are co-cultured. In contrast, the HGPRTase activity of the HGPRT+, but communication-incompetent L929 cells responds to changes of their own PRPP content but not to changes of the PRPP content of the cocultured HGPRT- cells. These and other experiments show that PRPP is freely exchangeable between communication-competent cells and that the intracellular activity of HGPRTase in one cell can be regulated by changes in the levels of its substrate in another cell through metabolic cooperation. The results also indicate that HGPRTase normally functions at a small fraction of its total activity, and that this can be greatly increased by raising the intracellular PRPP levels. Furthermore, it is found that when communication-competent cells establish intercellular communication, they share a common pool of PRPP and of purine nucleotides. This approach can be used as the basis of a biochemical method for the quantitation of metabolic cooperation between cells.  相似文献   

6.
The isolation and characterization of a mutant murine T-cell lymphoma (S49) with altered purine metabolism is described. This mutant, AU-100, was isolated from a mutagenized population of S49 cells by virtue of its resistance to 0.1 mM 6-azauridine in semisolid agarose. The AU-100 cells are resistant to adenosine mediated cytotoxicity but are extraordinarily sensitive to killing by guanosine. High performance liquid chromatography of AU-100 cell extracts has demonstrated that intracellular levels of GTP, IMP, and GMP are all elevated about 3-fold over those levels found in wild type cells. The AU-100 cells also contain an elevated intracellular level of pyrophosphoribosylphosphate (PPriboseP), which as in wild type cells is diminished by incubation of AU-100 cells with adenosine. However AU-100 cells synthesize purines de novo at a rate less than 35% of that found in wild type cells. In other growth rate experiments, the AU-100 cell line was shown to be resistant to 6-thioguanine and 6-mercaptopurine. Levels of hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) measured in AU-100 cell extracts, however, are 50-66% greater than those levels of HGPRTase found in wild type cell extracts. Nevertheless this mutant S49 cell line cannot efficiently incorporate labeled hypoxanthine into nucleotides since the salvage enzyme HGPRTase is inhibited in vivo. The AU-100 cell line was found to be 80% deficient in adenylosuccinate synthetase, but these cells are not auxotrophic for adenosine or other purines. The significant alterations in the control of purine de novo and salvage metabolism caused by the defect in adenylosuccinate synthetase are mediated by the resulting increased levels of guanosine nucleotides.  相似文献   

7.
The effect of undernutrition on the activity of two key enzymes of purine salvage pathway, namely hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and adenine phosphoribosyltransferase (APRTase), in cerebral hemispheres, cerebellum and brain stem of rats at different days of postnatal development was studied. The activity of HGPRTase and of APRTase is significantly lower in all brain regions of undernourished animals at 5 days after birth; between 10 and 15 days of age there is a recovery of the enzymatic activity which is particularly evident in the cerebellum. Successively both enzymatic activities decrease reaching at 30 days of age values quite similar to those of controls. These results indicate that undernutrition during fetal and postnatal development, impairs and delays the activity of the enzymes of purine salvage pathway.  相似文献   

8.
Purine phosphoribosyltransferases catalyze the Mg2+ -dependent reaction that transforms a purine base into its corresponding nucleotide. They are present in a wide variety of organisms including plants, mammals, and parasitic protozoa. Giardia lamblia, the causative agent of giardiasis, lacks de novo purine biosynthesis and relies primarily on adenine and guanine phosphoribosyltransferases (APRTase and GPRTase) constituting two independent and essential purine salvage pathways. The APRTase from G. lamblia was cloned and expressed with a 6-His tag at its C terminus and purified to apparent homogeneity. Adenine and alpha-d-5-phosphoribosyl-1-pyrophosphate (PRPP) have K(m) values of 4.2 and 143 microm with a k(cat) of 2.8 s(-1) in the forward reaction, whereas AMP and PP(i) have K(m) values of 87 and 450 microm with a k(cat) of 9.5 x 10(-3) s(-1) in the reverse reaction. Product inhibition studies indicated that the forward reaction follows a random Bi Bi mechanism. Results from the kinetics of equilibrium isotope exchange further verified a random Bi Bi mechanism in the forward reaction. In a mutant enzyme, F25W, with kinetic constants similar to those of the wild type and a tryptophan residue at the adenine binding site, the addition of adenine or AMP to the free mutant enzyme resulted in fluorescence quenching, whereas PRPP caused fluorescence enhancement. The dissociation constants thus estimated are 16.5 microm for adenine, 14.3 microm for AMP, and 83.0 microm for PRPP. PP(i) exerted no detectable effect on the tryptophan fluorescence at all, suggesting a lack of PP(i) binding to the free enzyme. An ordered substrate binding in the reverse reaction with AMP bound first followed by PP(i) is thus postulated.  相似文献   

9.
Because of the potential involvement of adenosine in the winter re-acquisition of nucleotide synthesis capability of strawberry plants (Fragaria × ananassa Duch., Elsanta), the properties and the time-course activity of an adenosine kinase (EC 2.7.1.20) and an adenine phosphoribosyltransferase (APRTase, EC 2.4.2.7) of the adenosine recycling pathway were characterized. The results showed an increase in APRTase activity during winter re-acquisition of nucleotide synthesis capability and an increase in adenosine kinase activity during spring growth of strawberry plants. Western blot analysis, performed with polyclonal rabbit antibodies raised against peach bud adenosine kinase, showed a concomitant rise in the strawberry enzyme. These results suggest that APRTase activity could be a good marker of the break of strawberry plant dormancy and adenosine kinase a marker of subsequent spring growth.  相似文献   

10.
Site-directed mutagenesis was used to replace Lys68 of the human hypoxanthine phosphoribosyltransferase (HGPRTase) with alanine to exploit this less reactive form of the enzyme to gain additional insights into the structure activity relationship of HGPRTase. Although this substitution resulted in only a minimal (one- to threefold) increase in the Km values for binding pyrophosphate or phosphoribosylpyrophosphate, the catalytic efficiencies (k(cat)/Km) of the forward and reverse reactions were more severely reduced (6- to 30-fold), and the mutant enzyme showed positive cooperativity in binding of alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) and nucleotide. The K68A form of the human HGPRTase was cocrystallized with 7-hydroxy [4,3-d] pyrazolo pyrimidine (HPP) and Mg PRPP, and the refined structure reported. The PRPP molecule built into the [(Fo - Fc)phi(calc)] electron density shows atomic interactions between the Mg PRPP and enzyme residues in the pyrophosphate binding domain as well as in a long flexible loop (residues Leu101 to Gly111) that closes over the active site. Loop closure reveals the functional roles for the conserved SY dipeptide of the loop as well as the molecular basis for one form of gouty arthritis (S103R). In addition, the closed loop conformation provides structural information relevant to the mechanism of catalysis in human HGPRTase.  相似文献   

11.
L C Yip  V Chang  M E Balis 《Biochemistry》1982,21(26):6972-6978
Sealed and unsealed plasma membrane vesicles were prepared from human erythrocytes and lymphocytes. Phosphoribosylpyrophosphate synthetase (PRibPP synthetase), hypoxanthine phosphoribosyltransferase (HPRTase), and adenine phosphoribosyltransferase (APRTase) activities are detectable on both inside-out and right-side-out sealed vesicles. Ghost preparations were about 0.2%, 1%, and 1.2% of the total erythrocyte and 0.5%, 5.3%, and 9.7% of the lymphocyte APRTase, HPRTase, and PRibPP synthetase activities. The rapid decrease in these enzyme activities, upon further purification of the membranes, seemed to suggest that they might be loosely bound extrinsic proteins. Evidence confirming the localization of these enzymes on the cell surface was obtained by measuring production of [14C]AMP by intact cells in medium containing [14C]adenine, ribose 5-phosphate, and Mg2+ATP. The formation of AMP was linear with time and number of cells present. Magnesium and phosphate exerted different effects on the production of extracellular AMP than on intracellular, which involves transport as well as phosphoribosylation. Cytosoluble and membrane-bound APRTase and PRibPP synthetase exhibited different catalytic properties and sensitivities to effectors. Membranes of erythrocytes of HPRTase-deficient patients contain little or no HPRTase activity when assayed in the absence of Triton. Reisolation of these membranes from admixture with normal hemolysates did not result in any bound activity; thus, the membrane-bound activity is not an artifact of the isolation procedure. Lysis with Triton released activity equal to about half that of control membranes. This is further evidence that the enzyme is firmly bound to the membrane.  相似文献   

12.
In order to define metabolic profiles of smooth muscle cell (SMC) modulation, 16 enzyme activities linked to nucleotide hydrolysis, lipolysis, lysosomal reactivity and intermediate glucose catabolism were compared in four rat arterial models, exhibiting four metabolic phenotypes of modulated smooth muscle cells: (i) "primary synthetic" statein immature aorta; (ii) "contractile" state in adult aorta; (iii) "hypertensive" state in aorta of hypertensive rat, SHR; (iiii) "secondary synthetic" state in diffuse intimal thickening of ligated carotid artery. Contractile SMC presented strong activities of enzymes linked to nucleotide ester hydrolysis and contractility (ATP-A-Ca, ATP-A-Mg, ATP-A-Ca/Mg, 5'nucleotidase) and to lipolytic process (butyryl cholinesterase, acid esterase). These enzyme activities were more pronounced in "hypertensive SMC". Incontrast, the same enzymes were weakly active or not expressed in "synthetic SMC". Increased lysosomal enzyme reactivity was a particular expression of "secondary synthetic SMC". The observed enzyme abnormalities in reactively modulated SMC (proliferative-synthetic phenotype) might be related to the loss of contractility and to the enhanced cell proliferation and lipid accumulation, characteristic features of modulated SMC in atherogenesis.  相似文献   

13.
A method for the quantitation of metabolic cooperation between cells is described. The method depends upon measuring the increase in HGPRTase activity that occurs between HGPRT+ cells and the HGPRT-LN (Lesch-Nyhan) cells. The variables upon which this method depends and their effect on the final determination are discussed.  相似文献   

14.
Genetic determinants of metabolic cooperation were studied by fusing chick erythrocytes to HGPRT- mammalian cells. Heterokaryons were then tested for their ability to incorporate [3H]hypoxanthine and to transfer radioactive material to HGPRT- recipient cells. Chick erythrocytes (CE) have nuclei which are inactive but contain the HGPRT gene and some cytoplasmic HGPRT enzyme activity. They are unable, however, to cooperate with HGPRT- cells. Of the two mammalian cell lines used, the human GM29 line is HGPRT- and capable of functioning as a receptor cell in cooperation experiments with HGPRT+ cells. The HGPRT- mouse A9 line on the other hand is unable to cooperate. Immediately after fusion, both types of heterokaryons incorporated [3H]hypoxanthine, indicating the presence of some chick HGPRT enzyme contributed by the erythrocyte partner at the time of fusion. While the CE-GM29 heterokaryons participated in metabolic cooperation shortly after fusion, the CE-A9 heterokaryons did not. However, four days after fusion, i.e., at a time when the erythrocyte nucleus had been reactivated, the CE-A9 heterokaryons did cooperate. This suggests that in CE-A9 heterokaryons the genes required for metabolic cooperation are expressed by the previously dormant chick erythrocyte nucleus.  相似文献   

15.
Due to the lack of de novo purine nucleotide biosynthesis, hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) is an essential enzyme in the human parasite Schistosoma mansoni for supplying guanine nucleotides and has been proposed as a potential target for antiparasitic chemotherapy. While the enzyme can be purified from adult schistosome worms, yields are too low to allow extensive structural and kinetic studies. We therefore cloned and sequenced the cDNA and gene encoding the schistosomal enzyme but were unable to positively identify the amino-terminal sequence of the enzyme from the DNA sequence. Knowledge of the exact amino terminus was necessary before accurate expression of active enzyme could be attempted. Therefore, we purified the HGPRTase from crude extracts of the adult worms. The purified enzyme has a subunit molecular mass of 26 kDa and an amino-terminal sequence of Met-Ser-Ser-Asn-Met. This sequence matched one of the potential initiation sites predicted from the cDNA and gene sequence. We next expressed the correct size cDNA of the S. mansoni HGPRTase in Escherichia coli using a vector that is regulated by a bacterial alkaline phosphatase promoter and uses an E. coli signal peptide for secretion of expressed product into the periplasmic space. Using this expression system, some of the recombinant enzyme is secreted and found to have a correct amino terminus. That remaining in the cytoplasm has part of the signal peptide attached to the amino terminus. The recombinant schistosomal HGPRTase isolated from the periplasm of the transformed E. coli was purified and found to have kinetic and physical properties identical to those of the native enzyme.  相似文献   

16.
Two different single nucleotide transitions of hypoxanthine-guanine phosphoribosyltransferase (HPRT) were identified in a Japanese patient with Lesch-Nyhan syndrome (LNS) and a patient with hereditary gout. HPRT enzyme activities in the two patients were severely deficient, but the size and amount of mRNA were normal according to Northern analysis. Entire coding regions of HPRT cDNAs were amplified by PCR and sequenced. A G-to-A substitution at base 208 in exon 3, which predicted glycine 70 to arginine, was detected in the LNS patient (identical mutation with HPRTUtrecht). A C-to-A substitution at base 73 in exon 2, which predicted proline 25 to threonine, was detected in the gout patient (designated HPRTYonago). We transfected normal HPRT cDNA, mutant cDNA with HRPTUtrecht or mutant cDNA with HPRTYonago, respectively, to HPRT-deficient mouse cells and isolated permanent expression cell lines. The HPRT-deficient mouse cells had no detectable HPRT activity and a very low amount of HPRT mRNA. When the HPRT-deficient mouse cells were transfected with normal human cDNA, HPRT enzyme activity increased to 21.8% that of normal mouse cells. The mouse cells transfected with HPRTUtrecht showed no increase in HPRT activity; however, when the mouse cells were transfected with HPRTYonago, the activity increased to 2.4% that of normal activity. The proliferative phenotypes of these cells in HAT medium and in medium containing 6-thioguanine were similar to those of skin fibroblasts from the patients. This series of studies confirmed that each of the two point mutations was responsible for the decreases in HPRT enzyme activity, and the proliferative phenotypes in HAT medium and medium containing 6-thioguanine.  相似文献   

17.
Experiments are described leading to partial compensation of a deficiency in the enzyme hypoxanthine-guanine phosphoribosyltransferase in mutant cells by supplying the cells with exogenous purified enzymes. DEAE-dextran is an effective helper agent, whereas poly(L-lysine, lysolecithin and amphotericin B seem to inhibit the entry of the enzymes or their activity. Enzyme preparation from Chinese hamster was found to have different effects in different mutant cell lines. In mutant Chinese hamster cells, the electrophoretic activity pattern remains unchanged for the Chinese hamster enzyme, but changes progressively to faster-moving activity peaks for the human enzyme after several hours. The metabolic effect of the incorporated enzyme is in the range between 3 and 4% of the normal cellular enzyme activity which corresponds to a 10–20 fold increase of hypoxanthine-guanine phosphoribosyltransferase activity in the mutant cells.  相似文献   

18.
Martynova MIu  Isaev DA  Koniukhov BV 《Genetika》2002,38(11):1511-1517
The mutant gene wellhaaring (we) confers the waved coat in mice, which is most pronounced in homozygotes at 10 to 21 days of postnatal development. Abnormal hair growth and structure in the we/we mutant mice results from defective cell differentiation in the inner root sheath of a hair follicle. To localize the site of the we gene action, we obtained ten chimeric mice by aggregation of the early C57BL/6-2we/we and BALB/c embryos. The chimera coat was waved, shaggy, or almost normal depending on the percentage of the mutant component. In the we/we +/+ chimeric animals of the first generation (G1) aged 21 days, both mutant and normal hair phenotypes were observed, which was especially discernible in zigzag hair. Note that none of the chimeras exhibited the alternating patterns of transversely oriented stripes or patches of either mutant or normal hair; i.e., they had a mixed parental hair phenotype. We also did not observe the animals with an intermediate phenotype, which suggests a discontinuous hair formation in chimeras according to the "all or nothing" principle. The data obtained indicate that the dermal papilla cells of a hair follicle are the sites for the we gene action. During the embryonic development, dermal cells are strongly mixed, which accounts for the lack of the clear-cut transverse stripes of either mutant or normal hair. The mutant gene we is probably responsible for a disrupted induction signal from the dermal papilla towards ectodermal cells of a hair follicle.  相似文献   

19.
Because of the lack of de novo purine biosynthesis, hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) is a critical enzyme in the purine metabolic pathway of the human parasite, Schistosoma mansoni. Using a cDNA clone encoding mouse HGPRTase and subsequently a synthetic oligonucleotide derived from sequencing a clone of genomic DNA, two clones were isolated from an adult schistosome cDNA library. One clone is 1.374 Kilobases (Kb) long and has an open reading frame of 693 bases. The deduced 231 amino acid sequence has 47.9% identity in a 217 amino acid overlap with human HGPRTase. Northern blot analysis indicates that the full length of mRNA for the S. mansoni HGPRTase is 1.45-1.6 Kb. Analysis of the primary structures of the putative active site for human and parasite enzymes reveal specific differences which may eventually be exploitable in the design of drugs for the treatment of schistosomiasis.  相似文献   

20.
Chinese hamster cells were treated with ethyl methanesulfonate or N-methyl-N'-nitro-N-nitrosoguanidine, and mutants resistant to 8-azaguanine were selected and characterized. Hypoxanthine-guanine phosphoribosyltransferase activity of sixteen mutants is extremely negative, making them suitable for reversion to HGPRTase(+). Ten of the extremely negative mutants revert at a frequency higher than 10(-7) suggesting their point mutational character. The remaining mutants have demonstrable HGPRTase activity and are not useful for reversion analysis. Five of these mutants have < 2% HGPRTase and are presumably also HGPRTase point mutants. The remaining 14 mutants utilize exogenous hypoxanthine for nucleic acid synthesis poorly, and possess 20-150% of wild-type HGPRTase activity in in vitro. Their mechanism of 8-azaguanine resistance is not yet defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号