首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(3-6):307-313
We have investigated the effects of iron overload in vivo on the tocopherol levels and the extent of lipid peroxidation in rat liver microsomes and their response to subsequent oxidative stress in vitro. The results demonstrate a direct correlation between consumption of antioxidant defences and the induction and extent of malondialdehyde production in microsomes prepared from iron-loaded rats. The data are consistent with the requirement for iron (II)/iron (III) ratios in lipid peroxidation in control microsomes.  相似文献   

2.
Iron overload can have serious health consequences. Since humans lack an effective means to excrete excess iron, overload can result from an increased absorption of dietary iron or from parenteral administration of iron. When the iron burden exceeds the body's capacity for safe storage, the result is widespread damage to the liver, heart and joints, and the pancreas and other endocrine organs. Clear evidence is now available that iron overload leads to lipid peroxidation in experimental animals, if sufficiently high levels of iron are achieved. In contrast, there is a paucity of data regarding lipid peroxidation in patients with iron overload. Data from experiments using an animal model of dietary iron overload support the concept that iron overload results in an increase in an hepatic cytosolic pool of low molecular weight iron which is catalytically active in stimulating lipid peroxidation. Lipid peroxidation is associated with hepatic mitochondrial and microsomal dysfunction in experimental iron overload, and lipid peroxidation may underlie the increased lysosomal fragility that has been detected in homogenates of liver samples from both iron-loaded human subjects and experimental animals. Some current hypotheses focus on the possibility that the demonstrated functional abnormalities in organelles of the iron-loaded liver may play a pathogenic role in hepatocellular injury and eventual fibrosis. The recent demonstration that hepatic fibrosis is produced in animals with long-term dietary iron overload will allow this model to be used to further investigate the relationship between lipid peroxidation and hepatic injury in iron overload.  相似文献   

3.
《Free radical research》2013,47(1):125-129
The iron storage protein, ferritin, represents a possible source of iron for oxidative reactions in biological systems. It has been shown that superoxide and several xenobiotic free radicals can release iron from ferritin by a reductive mechanism. Tetravalent vanadium (vanadyl) reacts with oxygen to generate superoxide and pentavalent vanadium (vanadate). This led to the hypothesis that vanadyl causes the release of iron from ferritin. Therefore, the ability of vanadyl and vanadate to release iron from ferritin was investigated. Iron release was measured by monitoring the generation of the Fe2+-fcrrozine complex. It was found that vanadyl but not vanadate was able to mobilize ferritin iron in a concentration dependent fashion. Initial rates. and iron release over 30 minutes. were unaffected by the addition of superoxide dismutase. Glutathione or vanadate added in relative excess to the concentration of vanadyl, inhibited iron release up to 45%. Addition of ferritin at the concentration used for measuring iron release prevented vanddyl-induced NADH oxidation. Vanadyl promoted lipid peroxidation in phospholipid liposomes. Addition of ferritin to the system stimulated lipid peroxidation up to 50% above that with vanadyl alone. Fcrritin alone did not promote significant levels of lipid peroxidation.  相似文献   

4.
Lipid peroxidation stress induced by iron supplementation can contribute to the induction of gut lesions. Intensive sports lead to ischemia reperfusion, which increases free radical production. Athletes frequently use heavy iron supplementation, whose effects are unknown. On the other hand, milk proteins have in vitro antioxidant properties, which could counteract these potential side effects. The main aims of the study were: (1) to demonstrate the effects of combined exercise training (ET) and iron overload on antioxidant status; (2) to assess the protective properties of casein in vivo; (3) to study the mechanisms involved in an in vitro model.

Antioxidant status was assessed by measuring the activity of antioxidant enzymes (superoxide dismutase (SOD); glutathione peroxidase (GSH-Px)), and on the onset of aberrant crypts (AC) in colon, which can be induced by lipid peroxidation. At day 30, all ET animals showed an increase in the activity of antioxidant enzymes, in iron concentration in colon mucosa and liver and in the number of AC compared to untrained rats. It was found that Casein's milk protein supplementation significantly reduced these parameters. Additional information on protective effect of casein was provided by measuring the extent of TBARS formation during iron/ascorbate-induced oxidation of liposomes. Free casein and casein bound to iron were found to significantly reduce iron-induced lipid peroxidation. The results of the overall study suggest that Iron supplementation during intensive sport training would decrease anti-oxidant status. Dietary milk protein supplementation could at least partly prevent occurrence of deleterious effects to tissue induced by iron overload.  相似文献   

5.
The iron storage protein, ferritin, represents a possible source of iron for oxidative reactions in biological systems. It has been shown that superoxide and several xenobiotic free radicals can release iron from ferritin by a reductive mechanism. Tetravalent vanadium (vanadyl) reacts with oxygen to generate superoxide and pentavalent vanadium (vanadate). This led to the hypothesis that vanadyl causes the release of iron from ferritin. Therefore, the ability of vanadyl and vanadate to release iron from ferritin was investigated. Iron release was measured by monitoring the generation of the Fe2+-fcrrozine complex. It was found that vanadyl but not vanadate was able to mobilize ferritin iron in a concentration dependent fashion. Initial rates. and iron release over 30 minutes. were unaffected by the addition of superoxide dismutase. Glutathione or vanadate added in relative excess to the concentration of vanadyl, inhibited iron release up to 45%. Addition of ferritin at the concentration used for measuring iron release prevented vanddyl-induced NADH oxidation. Vanadyl promoted lipid peroxidation in phospholipid liposomes. Addition of ferritin to the system stimulated lipid peroxidation up to 50% above that with vanadyl alone. Fcrritin alone did not promote significant levels of lipid peroxidation.  相似文献   

6.
High levels of iron, measured as serum ferritin, are associated to a worse outcome after stroke. However, it is not known whether ischemic damage might increase ferritin levels as an acute phase protein or whether iron overload affects stroke outcome. The objectives are to study the effect of stroke on serum ferritin and the contribution of iron overload to ischemic damage.Swiss mice were fed with a standard diet or with a diet supplemented with 2.5% carbonyl iron to produce iron overload. Mice were submitted to permanent (by ligature and by in situ thromboembolic models) or transient focal ischemia (by ligature for 1 or 3 h).Treatment with iron diet produced an increase in the basal levels of ferritin in all the groups. However, serum ferritin did not change after ischemia. Animals submitted to permanent ischemia had the same infarct volume in the groups studied. However, in mice submitted to transient ischemia followed by early (1 h) but not late reperfusion (3 h), iron overload increased ischemic damage and haemorrhagic transformation.Iron worsens ischemic damage induced by transient ischemia and early reperfusion. In addition, ferritin is a good indicator of body iron levels but not an acute phase protein after ischemia.  相似文献   

7.
Ferritin in liver, plasma and bile of the iron-loaded rat   总被引:2,自引:0,他引:2  
Rats were loaded with iron. With overload, up to a 10-fold increase of the iron and ferritin protein content of the livers was measured. The plasma ferritin concentration increased gradually with the ferritin concentration in the liver. The ferritin concentration in the bile increased also and was in the same range as in the plasma. The ratio plasma ferritin concentration to bile ferritin concentration in individual rats decreased in the case of considerable iron overload. After intravenous injection of liver ferritin, less than 2% of the ferritin concentration that disappeared from the blood was found to be in the bile. Isoelectric focussing revealed that the microheterogeneity of liver and bile ferritin were identical, but slightly different from plasma ferritin. These results indicate that ferritin was not solely leaking from the plasma to the bile. Together with ferritin, iron accumulated in the bile. The iron content of the bile ferritin was in the same range as in fully iron-loaded liver ferritin. It is likely that ferritin in the bile is excreted by the liver and consists of normal iron-loaded liver ferritin molecules. In all circumstances, the amount of iron in the bile was much higher than could be accounted for by transport by the bile ferritin. The ferritin protein to iron ratio in the bile was 0.1-1.2, which was in the same range as was measured in isolated lysosomal fractions of the liver. Those results agree with the supposition that ferritin and iron in the bile are excreted by the liver though lysosomal exocytosis.  相似文献   

8.
Iron-deficient female Wistar rats were fed a diet which contained 0.5% 3,5,5-trimethylhexanoyl (TMH)-ferrocene over a 57-week period. The state of iron deficiency was characterized by means of the absence of stainable iron in the bone marrow. After the first days on the iron-enriched diet, ferritin-containing siderosomes were found, in numerous erythroblasts up to orthochromatic normoblasts and in reticulocytes, i.e. the dispensed iron was used for haemoglobin synthesis. After 1 week the first macrophages showed a positive Perls' Prussian blue reaction. In the cytoplasm they stored the iron in the form of free ferritin molecules and lysosomally as aggregated ferritin and/or haemosiderin. The iron loading of the macrophages increased in both of the storage qualities proportionally with duration of the feeding period and reached a maximum after 38 weeks. Final stages showed extremely iron-loaded macrophages with high concentrations of free ferritin molecules and large siderosomes, partially flowing together to still greater units. Iron deposits within endothelial cells of bone marrow sinusoids can be observed for the first time after 4 weeks. In these cells the iron is stored as ferritin in siderosomes of relatively small and uniform size; free ferritin molecules in the cytosol were of only slight concentration. The TMH-ferrocene model of iron overload shows in the bone marrow: (1) an unimpeded utilization of the iron component for erythropoiesis, (2) development of excessive iron overload of the bone marrow in macrophages and endothelial cells of sinusoids and (3) a pattern of distribution of iron as seen in secondary haemochromatosis.  相似文献   

9.
In Vitro Studies of Ferritin Iron Release and Neurotoxicity   总被引:2,自引:1,他引:1  
Abstract: The increase in brain iron associated with several neurodegenerative diseases may lead to an increased production of free radicals via the Fenton reaction. Intracellular iron is usually tightly regulated, being bound by ferritin in an insoluble ferrihydrite core. The neurotoxin 6-hydroxydopamine (6-OHDA) releases iron from the ferritin core by reducing it to the ferrous form. Iron release induced by 6-OHDA and structurally related compounds and two other dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium iodide (MPP+) and 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo), were compared, to identify the structural characteristics important for such release. 1,2,4-Trihydroxybenzene (THB) was most effective in releasing ferritin-bound iron, followed by 6-OHDA, dopamine, catechol, and hydroquinone. Resorcinol, MPP+, and TaClo were ineffective. The ability to release iron was associated with a low oxidation potential. It is proposed that a low oxidation potential and an ortho -dihydroxyphenyl structure are important in the mechanism by which ferritin iron is mobilized. In the presence of ferritin, both 6-OHDA and THB strongly stimulated lipid peroxidation, an effect abolished by the addition of the iron chelator deferoxamine. These results suggest that ferritin iron release contributes to free radical-induced cell damage in vivo.  相似文献   

10.
Superoxide radicals, a species known to mobilize ferritin iron, and their interaction with catalytic iron have been implicated in the pathogenesis of alcohol-induced liver injury. The mechanism(s) by which ethanol metabolism generates free radicals and mobilizes catalytic iron, however, is not fully defined. In this investigation the role of hepatic aldehyde oxidase in the mobilization of catalytic iron from ferritin was studied in vitro. Iron mobilization due to the metabolism of ethanol to acetaldehyde by alcohol dehydrogenase was increased 100% by the addition of aldehyde oxidase. Iron release was favored by low pH and low oxygen concentration. Mobilization of iron due to acetaldehyde metabolism by aldehyde oxidase was completely inhibited by superoxide dismutase but not by catalase suggesting that superoxide radicals mediate mobilization. Acetaldehyde-aldehyde oxidase mediated reduction of ferritin iron was facilitated by incubation with menadione, an electron acceptor for aldehyde oxidase. Mobilization of ferritin iron due to the metabolism of acetaldehyde by aldehyde oxidase may be a fundamental mechanism of alcohol-induced liver injury.  相似文献   

11.
Iron is a key micronutrient for the human body and participates in biological processes, such as oxygen transport, storage, and utilization. Iron homeostasis plays a crucial role in the function of the heart and both iron deficiency and iron overload are harmful to the heart, which is partly mediated by increased oxidative stress. Iron enters the cardiomyocyte through the classic pathway, by binding to the transferrin 1 receptor (TfR1), but also through other routes: T-type calcium channel (TTCC), divalent metal transporter 1 (DMT1), L-type calcium channel (LTCC), Zrt-, Irt-like Proteins (ZIP) 8 and 14. Only one protein, ferroportin (FPN), extrudes iron from cardiomyocytes. Intracellular iron is utilized, stored bound to cytoplasmic ferritin or imported by mitochondria. This cardiomyocyte iron homeostasis is controlled by iron regulatory proteins (IRP). When the cellular iron level is low, expression of IRPs increases and they reduce expression of FPN, inhibiting iron efflux, reduce ferritin expression, inhibiting iron storage and augment expression of TfR1, increasing cellular iron availability. Such cellular iron homeostasis explains why the heart is very susceptible to iron overload: while cardiomyocytes possess redundant iron importing mechanisms, they are equipped with only one iron exporting protein, ferroportin. Furthermore, abnormalities of iron homeostasis have been found in heart failure and coronary artery disease, however, no clear picture is emerging yet in this area. If we better understand iron homeostasis in the cardiomyocyte, we may be able to develop better therapies for a variety of heart diseases to which abnormalities of iron homeostasis may contribute.  相似文献   

12.
Iron is involved in the formation of oxidants capable of damaging membranes, protein, and DNA. Using 137Cs gamma radiation, we investigated the release of iron from ferritin and concomitant lipid peroxidation by radiolytically generated reducing radicals, superoxide and the carbon dioxide anion radical. Both radicals released iron from ferritin with similar efficiencies and iron mobilization from ferritin required an iron chelator. Radiolytically generated superoxide anion resulted in peroxidation of phospholipid liposomes as measured by malondialdehyde formation only when ferritin was included as an iron source and the released iron was found to be chelated by the phospholipid liposomes.  相似文献   

13.
Serum ferritin concentration correlates with tissue iron stores in humans, horses, calves, dogs, cats, and pigs. Serum ferritin is considered the best serum analyte to predict total body iron stores in these species, and is more reliable than serum iron or total iron‐binding capacity, both of which may be affected by disorders unrelated to iron adequacy or excess (including hypoproteinemia, chronic infection, hemolytic anemia, hypothyroidism, renal disease, and drug administration). Iron overload has been documented to result in hemochromatosis in captive northern fur seals (Callorhinus ursinus); therefore, we developed an enzyme‐linked immunosorbent assay (ELISA) to measure serum ferritin in this species. The assay uses two murine anti‐canine ferritin monoclonal antibodies in a sandwich arrangement that was originally used in an ELISA to measure serum ferritin in dogs. Ferritin isolated from fur seal liver was used as a standard. Ferritin standards were linear from 0 to 50 ng/ml. Recovery of purified ferritin from fur seal serum varied from 89% to 99%. The within‐assay variability was 6%, and the assay‐to‐assay variability for two different samples was 10% and 16%. Zoo Biol 23:79‐84, 2004.© 2004 Wiley‐Liss, Inc.  相似文献   

14.
The flavonol rutin has been shown to possess antioxidant and iron chelating properties in vitro and in vivo. These dual properties are beneficial as therapeutic options to reduce iron accumulation and the generation of reactive oxygen species (ROS) resultant from excess free iron. The effect of rutin on iron metabolism has been limited to studies performed in wildtype mice either injected or fed high-iron diets. The effect of rutin on iron overload caused by genetic dysregulation of iron homoeostasis has not yet been investigated. In the present study we examined the effect of rutin treatment on tissue iron loading in a genetic mouse model of iron overload, which mirrors the iron loading associated with Type 3 hereditary haemochromatosis patients who have a defect in Transferrin Receptor 2 (TFR2). Male TFR2 knockout (KO) mice were administered rutin via oral gavage for 21 continuous days. Following treatment, iron levels in serum, liver, duodenum and spleen were assessed. In addition, hepatic ferritin protein levels were determined by Western blotting, and expression of iron homoeostasis genes by quantitative real-time PCR. Rutin treatment resulted in a significant reduction in hepatic ferritin protein expression and serum transferrin saturation. In addition, trends towards decreased iron levels in the liver and serum, and increased serum unsaturated iron binding capacity were observed. This is the first study to explore the utility of rutin as a potential iron chelator and therapeutic in an animal model of genetic iron overload.  相似文献   

15.
铁是血红素、线粒体呼吸链复合体和各种生物酶的重要辅助因子,参与氧气运输、氧化还原反应和代谢物合成等生物过程。铁蛋白(ferritin)是一种铁存储蛋白质,通过储存和释放铁来维持机体内铁平衡。铁自噬(ferritinophagy)作为一种选择性自噬方式,介导铁蛋白降解释放游离铁,参与细胞内铁含量的调控。适度铁自噬维持细胞内铁含量稳定,但铁自噬过度会释放出大量游离铁。通过芬顿 (Fenton)反应催化产生大量的活性氧(reactive oxygen species, ROS),发生脂质过氧化造成细胞受损。因此,铁自噬在维持细胞生理性铁稳态中发挥至关重要的作用。核受体共激活因子4 (nuclear receptor co-activator 4, NCOA4)被认为是铁自噬的关键调节因子,与铁蛋白靶向结合,并传递至溶酶体中降解释放游离铁,其介导的铁自噬构成了铁代谢的重要组成部分。最新研究表明,NCOA4受体内铁含量、自噬、溶酶体和低氧等因素的调控。NCOA4介导的铁蛋白降解与铁死亡(ferroptosis)有关。铁死亡是自噬性细胞死亡过程。铁自噬通过调节细胞铁稳态和细胞ROS生成,成为诱导铁死亡的上游机制,与贫血、神经退行性疾病、癌症、缺血/再灌注损伤与疾病的发生发展密切相关。本文针对NCOA4介导的铁自噬通路在铁死亡中的功能特征,探讨NCOA4在这些疾病中的作用,可能为相关疾病的治疗提供启示。  相似文献   

16.
《Free radical research》2013,47(6):317-320
The normal brain contains regions with high concentrations of iron, part of which appears to be in a low molecular mass chelatable form. Iron complexes with a molecular mass of below 10,000, were measured in ultrafiltrates of homogenized gerbil brains using the bleomycin assay, and were found to average 20.5 ± 3.5 μM (n = 8). As expected, no bleomycin detectable iron was found in the plasma of these animals.

No obvious difference in the tissue levels of bleomycin-detectable iron was recorded following ischaemia and reperfusion. This is probably due to the already abundant presence of iron in the brain and the likely release of iron from protected sites due to structural damage inherent in the preparative procedures used.  相似文献   

17.
Iron overload has been associated with damage of the liver and other organs of patients with primary or secondary increased iron load. In order to study the effect of iron overload on the pathophysiology of kidney lysosomes, experimentally induced iron overload models were employed. Iron overload was achieved through intraperitoneal injections of Fe-dextran (Imferon) in male rats, at different final iron concentrations (825 and 1650 mg/kg, single and double dose groups respectively). Controls were injected with dextran following a similar protocol. The animals were killed at different time points after the last injection. Subcellular fractionation studies of kidney homogenates were carried out by differential centrifugation and density gradient centrifugation. The kidney iron load was increased with both doses. Iron appeared to accumulate mainly in the lysosomes, bringing about distinct changes in the behaviour of the organelles as judged by subcellular fractionation studies. Lysosomes became more fragile and showed increased density. The extent of the above changes seemed to correlate with the extent and duration of iron accumulation and could be reversed when the iron load was reduced.  相似文献   

18.
Iron overload is relatively common and is now detected more frequently because of inclusion of serum iron measurement in automated clinical chemistry panels. Secondary hemosiderosis and hemochromatosis result from increased iron absorption associated with increased erythropoiesis compensating for hemolysis, increased dietary iron, inappropriate prolonged oral iron therapy or chronic multiple transfusions. Primary hemochromatosis is a genetic metabolic disorder associated with the HLA locus on chromosome 6 resulting in increased iron absorption, though erythropoiesis and dietary iron are normal, and abnormal diversion of iron from reticuloendothelial (RE) to parenchymal cells. A genetic increase of intracellular iron carrier is a proposed basic mechanism. Only in the cirrhotic stage of primary hemochromatosis do RE iron and serum ferritin increase. Since both serum iron and serum ferritin may remain normal in the precirrhotic stage and may be falsely positive in the absence of iron overload, direct measurement of body iron stores is often useful. Measurement of tissue iron in liver biopsy specimens is widely used. However, quantitation of total mobilizable body iron by measurement of a 6-hour urine collection after intravenous injection of 59Fe-DTPA is noninvasive, sensitive, relatively accurate, and together with other laboratory and clinical data provides a practical means of establishing the correct diagnosis and therapy early enough to minimize organ damage.  相似文献   

19.
6-hydroxydopamine (6-OHDA) proved to be a very effective agent for iron release from ferritin. Iron release was enhanced in the presence of SOD, catalase and under anaerobic conditions. Ascorbic acid, a well known agent able to release iron from ferritin, increased the amount of released iron in more than an additive manner when used in combination with 6-OHDA. Similar to 6-OHDA, 6-hydroxydopa (Topa) and 1,2,4-benzenetriol were also able to release iron in large amounts; in contrast, catecholamines and other benzenediols were comparatively ineffective.  相似文献   

20.
Ethanol-induced lipid peroxidation was studied in primary rat hepatocyte cultures supplemented with ethanol at the concentration of 50 mM. Lipid peroxidation was assessed by two indices: (1) conjugated dienes by second-derivative UV spectroscopy in lipid extract of hepatocytes (intracellular content), and (2) free malondialdehyde (MDA) by HPLC-UV detection and quantitation for the incubation medium (extracellular content). In cultures supplemented with ethanol, free MDA increased significantly in culture media, whereas no elevation of conjugated diene level was observed in the corresponding hepatocytes. The cellular pool of low-mol-wt (LMW) iron was also evaluated in the hepatocytes using an electron spin resonance procedure. An early increase of intracellular LMW iron (≤1 hr) was observed in ethanol-supplemented cultures; it was inhibited by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase, whereas α-tocopherol, which prevented lipid peroxidation, did not inhibit the increase of LMW iron. Therefore, the LMW iron elevation was the result of ethanol metabolism and was not secondarily induced by lipid hydroperoxides. Thus, ethanol caused lipid peroxidation in rat hepatocytes as shown by the increase of free MDA, although no conjugated diene elevation was detected. During ethanol metabolism, an increase in cellular LMW iron was observed that could enhance conjugated diene degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号