首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of type I interferons on Friend retrovirus infection   总被引:1,自引:0,他引:1  
The type I interferon (IFN) response plays an important role in the control of many viral infections. However, since there is no rodent animal model for human immunodeficiency virus, the antiviral effect of IFN-alpha and IFN-beta in retroviral infections is not well characterized. In the current study we have used the Friend virus (FV) model to determine the activity of type I interferons against a murine retrovirus. After FV infection of mice, IFN-alpha and IFN-beta could be measured between 12 and 48 h in the serum. The important role of type I IFN in the early immune defense against FV became evident when mice deficient in IFN type I receptor (IFNAR(-/-)) or IFN-beta (IFN-beta(-/-)) were infected. The levels of FV infection in plasma and in spleen were higher in both strains of knockout mice than in C57BL/6 wild-type mice. This difference was induced by an antiviral effect of IFN-alpha and IFN-beta and was most likely mediated by antiviral enzymes as well as by an effect of these IFNs on T-cell responses. Interestingly, the lack of IFNAR and IFN-beta enhanced viral loads during acute and chronic FV infection. Exogenous IFN-alpha could be used therapeutically to reduce FV replication during acute but not chronic infection. These findings indicate that type I IFN plays an important role in the immediate antiviral defense against Friend retrovirus infection.  相似文献   

2.
Both native human IFN-beta or -gamma added to human monocytes in culture increased their leishmaniacidal effect on intracellular Leishmania tropica major (L. major) amastigotes. This effect was dose-dependent, and was apparent if the IFN was added either before or after infection of the monocyte cultures with the promastigote form of the parasite. Compared on the basis of antiviral activity, IFN-gamma was shown to have a leishmaniacidal effect approximately three times greater than IFN-beta. Recombinant IFN preparations showed similar effects. In addition, IFN-gamma increased H2O2 production from human monocytes in culture in a dose-dependent manner. Monoclonal antibody to IFN-gamma abrogated both its effect on the leishmaniacidal capacity and on H2O2 production by the monocytes. These results suggest that IFN-gamma may be of therapeutic value in cutaneous leishmaniasis.  相似文献   

3.
This study confirms our earlier finding that human interleukin (IL)-1 beta exerts an antiviral effect on diploid fibroblasts and on MG-63 osteosarcoma cells. It also extends the observation in that a similar effect was noted on aged but not freshly trypsinized HEp-2 cells, and that not only IL-1 beta but also IL-1 alpha and tumor necrosis factor (TNF)-alpha exerted similar antiviral effects on cells. The antiviral effects of these cytokines were neutralized by addition to the assay system of an antibody that was specific for interferon (IFN)-beta 1, indicating that IFN-beta 1 or a structurally or functionally related substance is involved in the antiviral activity observed. Both IL-1 and TNF were able to induce production of the 26-kDa protein, also known as IFN-beta 2, hybridoma/plasmacytoma growth factor (HPGF) or B-cell stimulatory factor-2 (BSF-2) and previously proposed as an alternative to IFN-beta 1 for mediating the antiviral effect of TNF. However, no good correlation was found between the antiviral effects of TNF and its potential to induce production of the 26-kDa protein. Furthermore, the anti-IFN-beta 1 serum which neutralized the antiviral activity of IL-1 and TNF did not cross-react with the 26-kDa protein. Conversely, the antiviral effect of IL-1 and TNF was only weakly neutralized by an antibody that did react with the 26-kDa protein and showed low cross-reactivity with IFN-beta 1. These observations, together with the low specific activity of the 26-kDa protein as an antiviral agent (less than 10(5) U/mg protein) provide strong arguments against this protein and in favor of IFN-beta 1 (or still another IFN-beta 1-related molecule) as the ultimate mediator of the antiviral effect of IL-1 and TNF.  相似文献   

4.

Background & Aims

The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV).

Methods

This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice.

Results

Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways.

Conclusions

These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.  相似文献   

5.
Earlier studies demonstrated the induction of beta 2-interferon (IFN-beta 2) in human diploid fibroblasts (FS-4 strain) exposed to tumor necrosis factor (TNF). These studies suggested that IFN-beta 2 mediates an antiviral effect in TNF-treated cells and exerts a feedback inhibition of the mitogenic effect of TNF. Here we demonstrate that the expression of the antiviral action of TNF can be enhanced by prior exposure of FS-4 cells to trace amounts of IFN-beta 1. IFN-beta 1, at a higher concentration, can directly increase the expression of IFN-beta 2. Exposure of cells to TNF enhanced IFN-beta 2 (but not IFN-beta 1) mRNA expression in response to poly(I).poly(C), an IFN inducer which is also known to stimulate FS-4 cell growth. Platelet-derived growth factor and interleukin-1 also led to the increased expression of IFN-beta 2. However, platelet-derived growth factor and interleukin-1 could override the antiviral effect of TNF and also that of exogenously added IFN-beta 1. Our data suggest that a complex network of interactions that involves the endogenous production of IFN-beta 2 is triggered by several growth-modulatory cytokines. Cellular homeostasis is likely to represent a balance between the induction of IFN-beta 2 by these cytokines and their ability to override the inhibitory actions of IFN-beta 2.  相似文献   

6.
7.
Human interferon-alpha 8 (HuIFN alpha 8), a type I interferon (IFN), is a cytokine belonging to the hematopoietic super-family that includes human growth hormone (HGH). Recent data identified two human type I IFN receptor components. One component (p40) was purified from human urine by its ability to bind to immobilized type I IFN. A second receptor component (IFNAR), consisting of two cytokine receptor-like domains (D200 and D200'), was identified by expression cloning. Murine cells transfected with a gene encoding this protein were able to produce an antiviral response to human IFN alpha 8. Both of these receptor proteins have been identified as members of the immunoglobulin superfamily of which HGH receptor is a member. The cytokine receptor-like structural motifs present in p40 and IFNAR were modeled based on the HGH receptor X-ray structure. Models of the complexes of HuIFN alpha 8 with the receptor subunits were built by superpositioning the conserved C alpha backbone of the HuIFN alpha 8 and receptor subunit models with HGH and its receptor complex. The HuIFN alpha 8 model was constructed from the C alpha coordinates of murine interferon-beta crystal structure. Electrostatic potentials and hydrophobic interactions appear to favor the model of HuIFN alpha 8 interacting with p40 at site 1 and the D200' domain of IFNAR at site 2 because there are regions of complementary electrostatic potential and hydrophobic interactions at both of the proposed binding interfaces. Some of the predicted receptor binding residues within HuIFN alpha 8 correspond to functionally important residues determined previously for human IFN alpha 1, IFN alpha 2, and IFN alpha 4 subtypes by site-directed mutagenesis studies. The models predict regions of interaction between HuIFN alpha 8 and each of the receptor proteins, and provide insights into interactions between other type I IFNs (IFN-alpha subtypes and IFN-beta) and their respective receptor components.  相似文献   

8.
In vitro cultivated human monocytes show a time-dependent differentiation into macrophages, characterized by an increased expression of macrophage-specific antigens. Monocytes-macrophages were infected with human immunodeficiency virus type 1 strain Ba-L (HIV-1Ba-L) at different stages of differentiation. When 7-day cultured macrophages were infected in the presence of antibodies to beta interferon (IFN-beta), a significant increase in HIV-1 p24 release was detected. This effect was not observed in 1-day monocytes. This finding suggests that IFN-beta secreted by the infected macrophages inhibits p24 release. Treatment of cultured macrophages with recombinant gp120 (rgp120) protein resulted in the induction of IFN-beta mRNA and in an antiviral state to vesicular stomatitis virus. This rgp120-induced antiviral state was largely neutralized by antibodies to IFN-beta, whereas anti-IFN-alpha antibodies were ineffective. In cultured macrophages, 0.1 IU of IFN-beta per ml was sufficient to induce a marked inhibition of vesicular stomatitis virus yield, whereas this dose was ineffective in 1-day monocytes. These results indicate that (i) HIV-1 (possibly in part through its gp120 protein) induces low levels of IFN-beta in macrophages and (ii) this IFN-beta is very effective in inducing an antiviral state in differentiated macrophages.  相似文献   

9.
We have recently described an IFN regulatory factor 3-mediated antiviral gene program that is induced by both Toll-like receptor (TLR)3 and TLR4 ligands. In our current study, we show that activation of IFN/viral response gene expression in primary macrophage cells is stronger and prolonged with TLR3 stimulation compared with that of TLR4. Our data also reveal that the cytoplasmic tails of both TLR3 and TLR4 can directly interact with myeloid differentiation factor 88 (MyD88). However, although Toll/IL-1 receptor homology domain-containing adaptor protein/MyD88 adaptor-like is able to associate with TLR4, we were unable to detect any interaction between Toll/IL-1 receptor homology domain-containing adaptor protein/MyD88 adaptor-like and TLR3. By using quantitative real-time PCR assays, we found that TLR3 expression is inducible by both TLR3 and TLR4 ligands, while TLR4 expression is not inducible by these same stimuli. Furthermore, using cells derived from mice deficient in the IFN-alphabetaR, we show that both TLR3 and TLR4 require IFN-beta autocrine/paracrine feedback to induce TLR3 expression and activate/enhance genes required for antiviral activity. More specifically, a subset of antiviral genes is initially induced independent of IFN-beta, yet the cytokine further enhances expression at later time points. This was in contrast to a second set of genes (including TLR3) that is induced only after IFN-beta production. Taken together, our data argue that, despite both TLR3 and TLR4 being able to use IFN-beta to activate/enhance antiviral gene expression, TLR3 uses multiple mechanisms to enhance and sustain the antiviral response more strongly than TLR4.  相似文献   

10.
Interferon (IFN) has been part of the standard treatment of chronic hepatitis B infection for more than 2 decades, yet the mechanism of action of this antiviral remains poorly understood. It was recently observed that members of the human APOBEC family of cytidine deaminases endowed with anti-hepatitis B virus (HBV) activity are upregulated by type I and II IFNs. However, we demonstrated that, in tissue culture, these cellular enzymes are not essential effectors of the anti-HBV action of these cytokines. Here, we show that murine APOBEC3 (muA3) can also block HBV replication. While expressed at low levels in the mouse liver at baseline, muA3 is upregulated upon IFN induction. However, in HBV-transgenic muA3 knockout mice, IFN induction blocked HBV DNA production as efficiently as in control HBV-transgenic muA3-competent animals. We conclude that APOBEC3 is not an essential mediator of the IFN-mediated inhibition of HBV in vivo.  相似文献   

11.
Mouse interferons beta (IFN-beta) and gamma (IFN-gamma) inhibit the differentiation of 3T3-L1 fibroblasts into adipocytes when added to cultures at the time of induction of differentiation. Differentiation, as measured by incorporation of radiolabeled leucine into lipids, was inhibited 50% by approximately 1-3 units/ml of either IFN-beta or IFN-gamma, with maximum inhibition of differentiation achieved with 100 units/ml of either IFN. The magnitude of antiviral activity induced by IFN-beta and IFN-gamma was similar in differentiated and undifferentiated 3T3-L1 cells, although the slopes of the dose-response curves were different; IFN-gamma induced an antiviral state with greater efficiency than IFN-beta in differentiated and undifferentiated 3T3-L1 cells. By contrast, IFN-beta induced the double-stranded RNA-dependent P1 protein kinase more efficiently than did IFN-gamma in both differentiated and undifferentiated cells. However, IFN-beta and IFN-gamma both induced greater phosphorylation of protein P1 in cell-free extracts prepared from differentiated adipocytes than in extracts from undifferentiated fibroblasts. Cultures treated with either beta or gamma IFN throughout 8 days of differentiation continued to produce double-stranded RNA-dependent protein kinase in a manner dependent on IFN dose. These results suggest that the antiviral and antidifferentiative activities of IFN-beta and IFN-gamma in 3T3-L1 cells involve different molecular mechanisms.  相似文献   

12.
The effect of IFN-alpha and IFN-beta on the expression of cell surface receptors for tumor necrosis factor (TNF) was examined in two human cell lines. In HeLa cells, IFN-alpha and IFN-beta increased 125I-TNF binding, whereas in HT-29 cells these two IFN either slightly decreased or had no effect on 125I-TNF binding. In contrast, IFN-gamma increased 125I-TNF binding in both cell lines. Both IFN-alpha and IFN-beta exerted an antagonistic effect on IFN-gamma-induced stimulation of TNF receptor expression in HT-29 cells, but did not inhibit TNF receptor induction by IFN-gamma in HeLa cells. IFN-gamma and, to a lesser extent, IFN-beta were synergistic with TNF in producing cytotoxic/cytostatic activity in HT-29 cells. Despite the inhibitory effect of IFN-beta on the IFN-gamma-induced stimulation of TNF receptor expression, IFN-beta did not inhibit the synergistic enhancement of TNF cytotoxicity by IFN-gamma in HT-29 cells. The dissociation between the effects of IFN-beta on TNF receptor expression and on the cytotoxic activity of TNF in HT-29 cells suggests that TNF receptor modulation is not a major mechanism of synergism between IFN and TNF.  相似文献   

13.
Intracellular interferons (IFNs) exert biological functions similar to those of extracellular IFNs, but the signal transduction pathway triggered by the intracellular ligands has not been fully revealed. We investigated the signaling cascade by sequence-specific knockdown of signaling molecules by means of the RNA interference. Truncated IFN-beta gene was constructed so that the N-terminal secretory signal sequence was deleted (SD.IFN-beta). Cells transfected with this construct showed phosphorylation and activation of the STAT1 without any detectable secretion of the cytokine. The MHC class I expression was significantly augmented, while the augmentation was suppressed by short interfering RNA duplexes specific for JAK1, TYK2, and IFN-alpha/beta receptor (IFNAR) 1 and 2c chains. The SD.IFN-beta also induced p53 and phosphorylation of p53 at Ser(15). Specific silencing of p53 abrogated the antiviral effect of SD.IFN-beta, suggesting that the tumor suppressor is critically involved in antiviral defense mediated by intracellular IFN.  相似文献   

14.
Mouse cells transformed by a bovine papillomavirus recombinant vector containing the human interferon (IFN) beta 1 (IFN-beta 1) gene could be induced to produce human as well as mouse IFNs. The optimal conditions for induction of human IFN and of its mRNA in these transformants resembled those needed for mouse IFN: high concentrations of DEAE-dextran and low concentrations of polyriboinosinic acid-polyribocytidylic acid. Superinduction by inhibitors of protein synthesis which strongly stimulate IFN-beta 1 induction in human cells had only a small effect on human IFN induction in bovine papillomavirus IFN-beta 1-transformed mouse cells. In contrast, cycloheximide without double-stranded RNA could induce significant levels of human IFN in the bovine papillomavirus IFN-beta 1 mouse transformants. After cycloheximide treatment, these cells contained IFN-beta 1 mRNA whose 5' ends originated in the authentic start site of the human IFN-beta 1 gene, as shown by S1 nuclease mapping. The transferred human gene, propagated extrachromosomally in the mouse cells, was, therefore, inducible under conditions different from those in human cells. The results also confirmed that the inhibitor of protein synthesis, cycloheximide, can induce expression of a human IFN gene.  相似文献   

15.
Ammonia inhibition of interferon synthesis   总被引:1,自引:0,他引:1  
Ammonium chloride (NH4Cl) was found to markedly inhibit the ability of cultured human fibroblasts to establish an antiviral state following exposure to poly IC. This antiviral state was diminished by the simultaneous addition of as little as 200 microgram/ml of NH4Cl. The effects of ammonia on the superinduction of human fibroblast interferon (IFN-beta) were also investigated. The titer of IFN dropped from 2600 units/ml in control cultures, to less than 50 units/ml in the presence of 400 microgram/ml of NH4Cl. A critical stage sensitive to ammonia was within the first 15 minutes following addition of poly IC.  相似文献   

16.
The antiviral and antiproliferative effects of highly purified Escherichia coli-derived human interferons (IFNs) were examined in human melanoma cells (Hs294T). Antiproliferative activity was monitored by measuring inhibition of cell multiplication, and antiviral activity was determined by inhibition of herpes simplex virus type 1 replication. Treatment of cells with IFN-gamma in combination with IFN-alpha A or IFN-beta 1 resulted in potentiation of both antiproliferative and antiviral activities. In contrast, combination treatments composed of IFN-alpha A and IFN beta 1 yielded inconsistent results. Some combinations reflected additive responses, whereas others were antagonistic. To examine correlations between IFN-induced biological activities and interactions of the different IFNs with cell surface receptors, in vivo [35S]methionine-labeled IFN-alpha A was prepared. Binding studies indicated the presence of 2,980 +/- 170 receptors per cell, each with an apparent Kd of (8.4 +/- 1.3) X 10(-11) M. Results from competitive binding studies suggested that Hs294T cells possess at least two types of IFN receptors: one which binds IFN-alpha A and IFN-beta 1 and another to which IFN-gamma binds.  相似文献   

17.
18.
A recombinant vaccinia virus expressing canine interferon (IFN)-beta was constructed (vv/cIFN-beta). In rabbit kidney (RK13) and canine A72 cells infected with vv/cIFN-beta, the recombinant canine IFN-beta was detected in both cell extracts and supernatants, and the IFN activities of the culture supernatants were also detected. Inhibition of N-linked glycosylation by tunicamycin treatment indicated that the recombinant canine IFN-beta was modified by N-linked glycosylation in a different way between RK13 and A72 cells, and that N-linked glycosylation is essential for its secretion. The growth of vv/cIFN-beta at a low multiplicity of infection was inhibited by antiviral activity of canine IFN-beta, indicating that this recombinant virus could be used as a suicide viral vector.  相似文献   

19.
Hepatitis B virus (HBV) is regarded as a stealth virus, invading and replicating efficiently in human liver undetected by host innate antiviral immunity. Here, we show that type I interferon (IFN) induction but not its downstream signaling is blocked by HBV replication in HepG2.2.15 cells. This effect may be partially due to HBV X protein (HBx), which impairs IFNβ promoter activation by both Sendai virus (SeV) and components implicated in signaling by viral sensors. As a deubiquitinating enzyme (DUB), HBx cleaves Lys63-linked polyubiquitin chains from many proteins except TANK-binding kinase 1 (TBK1). It binds and deconjugates retinoic acid-inducible gene I (RIG I) and TNF receptor-associated factor 3 (TRAF3), causing their dissociation from the downstream adaptor CARDIF or TBK1 kinase. In addition to RIG I and TRAF3, HBx also interacts with CARDIF, TRIF, NEMO, TBK1, inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon (IKKi) and interferon regulatory factor 3 (IRF3). Our data indicate that multiple points of signaling pathways can be targeted by HBx to negatively regulate production of type I IFN.  相似文献   

20.
Newcastle disease virus (NDV) is a negative-strand RNA virus with oncolytic activity against human tumors. Its effectiveness against tumors and safety in normal tissue have been demonstrated in several clinical studies. Here we show that the spread of NDV infection is drastically different in normal cell lines than in tumor cell lines and that the two cell types respond differently to beta interferon (IFN-beta) treatment. NDV rapidly replicated and killed HT-1080 human fibrosarcoma cells but spread poorly in CCD-1122Sk human skin fibroblast cells. Pretreatment with endogenous or exogenous IFN-beta completely inhibited NDV replication in normal cells but had little or no effect in tumor cells. Thus, the outcome of NDV infection appeared to depend on the response of uninfected cells to IFN-beta. To investigate their differences in IFN responsiveness, we analyzed and compared the expression and activation of components of the IFN signal transduction pathway in these two types of cells. The levels of phosphorylated STAT1 and STAT2 and that of the ISGF3 complex were markedly reduced in IFN-beta-treated tumor cells. Moreover, cDNA microarray analysis revealed significantly fewer IFN-regulated genes in the HT-1080 cells than in the CDD-1122Sk cells. This finding suggests that tumor cells demonstrate a less-than-optimum antiviral response because of a lesion in their IFN signal transduction pathway. The rapid spread of NDV in HT-1080 cells appears to be caused by their deficient expression of anti-NDV proteins upon exposure to IFN-beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号