首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The maximal capacity of the mitochondrial electron transport system (ETS) in intact cells is frequently estimated by promoting protonophore-induced maximal oxygen consumption preceded by inhibition of oxidative phosphorylation by oligomycin. In the present study, human glioma (T98G and U-87MG) and prostate cancer (PC-3) cells were titrated with different concentrations of the protonophore CCCP to induce maximal oxygen consumption rate (OCR) within respirometers in a conventional growth medium. The results demonstrate that the presence of oligomycin or its A-isomer leads to underestimation of maximal ETS capacity. In the presence of oligomycin, the spare respiratory capacity (SRC), i.e., the difference between the maximal and basal cellular OCR, was underestimated by 25 to 45%. The inhibitory effect of oligomycin on SRC was more pronounced in T98G cells and was observed in both suspended and attached cells. Underestimation of SRC also occurred when oxidative phosphorylation was fully inhibited by the ATP synthase inhibitor citreoviridin. Further experiments indicated that oligomycin cannot be replaced by the adenine nucleotide translocase inhibitors bongkrekic acid or carboxyatractyloside because, although these compounds have effects in permeabilized cells, they do not inhibit oxidative phosphorylation in intact cells. We replaced CCCP by FCCP, another potent protonophore and similar results were observed. Lower maximal OCR and SRC values were obtained with the weaker protonophore 2,4-dinitrophenol, and these parameters were not affected by the presence of oligomycin. In permeabilized cells or isolated brain mitochondria incubated with respiratory substrates, only a minor inhibitory effect of oligomycin on CCCP-induced maximal OCR was observed. We conclude that unless a previously validated protocol is employed, maximal ETS capacity in intact cells should be estimated without oligomycin. The inhibitory effect of an ATP synthase blocker on potent protonophore-induced maximal OCR may be associated with impaired metabolism of mitochondrial respiratory substrates.  相似文献   

3.
This study examined the role of calcineurin, a major calcium-dependent protein phosphatase, in dephosphorylating Ser-9 and activating glycogen synthase kinase-3β (GSK-3β). Treatment with calcineurin inhibitors increased phosphorylation of GSK-3β at Ser-9 in SH-SY5Y human neuroblastoma cells. The over-expression of a constitutively active calcineurin mutant, calcineurin A beta (1–401), led to a significant decrease in phosphorylation at Ser-9, an increase in the activity of GSK-3β, and an increase in the phosphorylation of tau. Km of calcineurin for a GSK-3β phosphopeptide was 469.3 μM, and specific activity of calcineurin was 15.2 nmol/min/mg. In addition, calcineurin and GSK-3β were co-immunoprecipitated in neuron-derived cells and brain tissues, and calcineurin formed a complex only with dephosphorylated GSK-3β. We conclude that in vitro, calcineurin can dephosphorylate GSK-3β at Ser-9 and form a stable complex with GSK-3β, suggesting the possibility that calcineurin regulates the dephosphorylation and activation of GSK-3β in vivo .  相似文献   

4.
Agents known to inphorylation of specific endogenous proteins in intact synaptosomes from rat brain. Synaptosome preparations, preincubated in vitro with 32Pi, incorporated 32P into a variety of specific proteins. Veratridine and high (60 mM) K+, which increase Ca2+ transport across membranes, through a mechanism involving membrane depolarization, as well as the calcium ionophore A23187, each markedly stimulated the incorporation of 32P into two specific proteins (80,000 and 86,000 daltons) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. All three agents failed to stimulate protein phosphorylation in calcium-free medium containing ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA). Moreover, the Ca2+-dependent protein phosphorylation could be reversed by the addition of sufficient EGTA to chelate all free extracellular Ca2+. Veratridine, high K+, and A23187 also stimulated 45Ca2+ accumulation by synaptosomes. Tetrodotoxin blocked the stimulation both of protein phosphorylation and of 45Ca2+ accumulation by veratridine but not by high K+ or A23187. Cyclic nucleotides and several putative neurotransmitters were without effect on protein phosphorylation in these intact synaptosome preparations. The absence of any endogenous protein phosphorylation in osmotically shocked synaptosome preparations incubated with 32Pi, and the inability of added [gamma-32P]ATP to serve as a substrate for veratridine-stimulated protein phosphorylation in intact preparations, indicated that the Ca2+-dependent protein phosphorylation occurred within intact subcellular organelles. Fractionation of a crude synaptosome preparation on a discontinuous Ficoll/sucrose flotation gradient indicated that these organelles were synaptosomes rather than mitochondria. The data suggest that conditions which cause an accumulation of calcium by synaptosomes lead to a calcium-dependent increase in phosphorylation of specific endogenous proteins. These phosphoproteins may be involved in the regulation of certain calcium-dependent nerve terminal functions such as neurotransmitter synthesis and release.  相似文献   

5.
Abstract: In the medium-sized spiny neurons of the striatonigral pathway, a cascade of events involving the activation of dopamine D1 receptors, an increase in cyclic AMP, and activation of cyclic AMP-dependent protein kinase causes the phosphorylation of DARPP-32 on Thr34, converting DARPP-32 into a powerful inhibitor of protein phosphatase-1. In the present study, the incubation of striatal or substantia nigra slices with GABA also increased the phosphorylation of DARPP-32 on Thr34. GABA did not significantly increase cyclic AMP levels in slices. The phosphorylation of DARPP-32 by GABA was blocked in both brain regions by pretreatment of slices with the GABAA receptor antagonist, bicuculline, but not with the GABAB receptor antagonist, phaclofen. Moreover, the threonine phosphorylation of DARPP-32 produced by maximally effective doses of either forskolin (in striatum) or l -3,4-dihydroxyphenylalanine (in substantia nigra) was increased further by GABA. The data are consistent with a model in which GABA increases the phosphorylation state of DARPP-32 by inhibiting dephosphorylation of the protein by the calcium/calmodulin-dependent protein phosphatase, calcineurin.  相似文献   

6.
Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(β-aminoethyl ether)-N-N′-tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent protein kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.  相似文献   

7.
Calcineurin, an important protein Ser/Thr phosphatase which acts on tau in vivo, is a heterodimer of a catalytic subunit, calcineurin A, and a regulatory subunit, calcineurin B, and is unique in being regulated by calmodulin. Here, we find that both subunits of calcineurin bind tau, and calmodulin interferes with the association between calcineurin and tau. The domains of both subunits of calcineurin and tau involved in binding are mapped. We also investigate the functional consequences of the interactions between both subunits of calcineurin, tau and calmodulin, and reveal the interactions affect dephosphorylation of tau by calcineurin and contribute to the balance of phosphorylation and dephosphorylation of tau in vivo. Our findings may be of potential significance in neuronal physiology and also in neurodegenerative disorders. They shed some light on how the interactions might control the phosphorylation state of tau under physiological conditions, and provide new insights into the treatment of tauopathies such as Alzheimer's disease.  相似文献   

8.
S Halpain  P Greengard 《Neuron》1990,5(3):237-246
Hippocampal slices were preincubated with 32P-orthophosphate and used to study the effect of glutamate analogs on protein phosphorylation. NMDA induced a rapid, 70% decrease in the phosphorylation of the microtubule-associated protein MAP2, with no change in the total amount of MAP2. Both competitive and noncompetitive NMDA antagonists blocked the effect of NMDA, but a glutamate antagonist acting at non-NMDA receptors did not. Kainate and quisqualate were less potent than NMDA in stimulating dephosphorylation of MAP2. Other forebrain regions (necortex, striatum, and olfactory bulb) also showed dephosphorylation of MAP2 in response to NMDA. These and other results suggest that NMDA receptor activation induces the dephosphorylation of MAP2 by stimulating a protein phosphatase, possibly the calcium/calmodulin-dependent protein phosphatase calcineurin. Moreover, they indicate that alteration in the properties of a microtubule-associated protein may account for some of the effects of glutamate on postsynaptic neurons.  相似文献   

9.
The regulation of the activity of CaMKII by PP-1 and PP-2A, as well as the role of this protein kinase in the phosphorylation of tau protein in forebrain were investigated. The treatment of metabolically active rat brain slices with 1.0 microM okadaic acid (OA) inhibited approximately 65% of PP-2A and had no significant effect on PP-1 in the 16000xg tissue extract. Calyculin A (CL-A), 0.1 microM under the same conditions, inhibited approximately 50% of PP-1 and approximately 20% of PP-2A activities. In contrast, a mixture of OA and CL-A practically completely inhibited both PP-2A and PP-1 activities. The inhibition of the two phosphatase activities or PP-2A alone resulted in an approximately 2-fold increase in CaMKII activity and an approximately 8-fold increase in the phosphorylation of tau at Ser 262/356 in 60 min. Treatment of the brain slices with KN-62, an inhibitor of the autophosphorylation of CaMKII at Thr 286/287, produced approximately 60% inhibition in CaMKII activity and no significant effect on tau phosphorylation at Ser 262/356. The KN-62-treated brain slices when further treated with OA and CL-A did not show any change in CaMKII activity. In vitro, both PP-2A and PP-1 dephosphorylated tau at Ser 262/356 that was phosphorylated with purified CaMKII. These studies suggest (i) that in mammalian forebrain the cytosolic CaMKII activity is regulated mainly by PP-2A, (ii) that CaMKII is the major tau Ser 262/356 kinase in brain, and (iii) that a decrease in PP-2A/PP-1 activities in the brain leads to hyperphosphorylation of tau not only by inhibition of its dephosphorylation but also by promoting the CaMKII activity.  相似文献   

10.
In previous studies, we observed that when rats were chronically treated wih haloperidol, there was a significant increase of calmodulin activity in their striatal membranes. Calmodulin is known to modulate calcium-dependent protein phosphorylation in neural membranes. In the present study, we found that the total 32P-incorporation in the striatal proteins from chronic haloperidol-treated rats was significantly increased in comparison to saline-treated rats. A majority of the phosphorylation was attributed to the calcium-mediated activity, since it could be blocked by a calcium chelating agent (EGTA). By using EGTA to inhibit phosphorylation, the results indicated that the haloperidol-treated rats had approximately 3.5-fold greater Ca++-dependent protein kinase activity than the saline-treated rats. Exogenous calcium alone was insufficient to stimulate phosphorylation in the haloperidol-treated rats to the same magnitude as in the saline-treated rats. Calmodulin may be required. 32P-incorporation of two striatal proteins at molecular weight 40 and 52 kilodaltons were markedly stimulated by calcium. Cyclic AMP-mediated phosphorylation seemed to take only a small part in the alteration of total phosphorylation. Therefore, the increase of calmodulin activity and calcium-dependent phosphorylation appears to play a major role in the drug-induced dopamine receptor supersensitivity in rat striatum.  相似文献   

11.
The respiratory uncouplers carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) affect the activities of two mitochondrial ion channels from mouse liver. At micromolar concentrations, the phenylhydrazones block the voltage-dependent 100-pS channel, mCS, and induce the multiple-conductance-level channel, MCC. The binding site(s) involved in perturbation of channel activities are probably distinct from the sites involved in uncoupling of oxidative phosphorylation which occurs at nanomolar concentrations of the phenylhydrazones. The effects of FCCP and CCCP on the mitochondrial ion channels could be partially reversed by washing with fresh media and were always reversed by perfusion with dithiothreitol. These results indicate that the effects of the phenylhydrazones on mitochondrial ion channels may be related to the ability of these compounds to act as sulfhydryl reagents and not to their protonophoric and uncoupling activity.  相似文献   

12.
In Alzheimer disease brain the activities of protein phosphatase (PP)-2A and PP-1 are decreased and the microtubule-associated protein tau is abnormally hyperphosphorylated at several sites at serine/threonine. Employing rat forebrain slices kept metabolically active in oxygenated artificial CSF as a model system, we investigated the role of PP-2A/PP-1 in the regulation of some of the major abnormally hyperphosphorylated sites of tau and the protein kinases involved. Treatment of the brain slices with 1.0 microM okadaic acid inhibited approximately 65% of PP-2A and produced hyperphosphorylation of tau at Ser 198/199/202, Ser 396/404 and Ser 422. No significant changes in the activities of glycogen synthase kinase-3 (GSK-3) and cyclin dependent protein kinases cdk5 and cdc2 were observed. Calyculin A (0.1 microM) inhibited approximately 50% PP-1, approximately 20% PP-2A, 50% GSK-3 and approximately 30% cdk5 but neither inhibited the activity of cyclin AMP dependent protein kinase A (PKA) nor resulted in the hyperphosphorylation of tau at any of the above sites. Treatment of brain slices with 1 microM okadaic acid plus 0.1 microM calyculin A inhibited approximately 100% of both PP-2A and PP-1, approximately 80% of GSK-3, approximately 50% of cdk5 and approximately 30% of cdc2 but neither inhibited PKA nor resulted in the hyperphosphorylation of tau at any of the above sites. These studies suggest (i) that PP-1 upregulates the phosphorylation of tau at Ser 198/199/202 and Ser 396/404 indirectly by regulating the activities of GSK-3, cdk5 and cdc2 whereas PP-2A regulates the phosphorylation of tau directly by dephosphorylation at the above sites, and (ii) that a decrease in the PP-2A activity leads to abnormal hyperphosphorylation of tau at Ser 198/199/202, Ser 396/404 and Ser 422.  相似文献   

13.
Protein kinase Cdelta (PKCdelta) is activated by stimuli that increase its tyrosine phosphorylation, including neurotransmitters that initiate fluid secretion in salivary gland (parotid) epithelial cells. Rottlerin, a compound reported to be a PKCdelta-selective inhibitor, rapidly increased the rate of oxygen consumption (QO2) of parotid acinar cells and PC12 cells. In parotid cells, this was distinct from the effects of the muscarinic receptor ligand carbachol, which promoted a sodium pump-dependent increase in respiration. Rottlerin increased the QO2 of isolated rat liver mitochondria to a level similar to that produced when oxidative phosphorylation was initiated by ADP or when mitochondria were uncoupled by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The effects of rottlerin on mitochondrial QO2 were neither mimicked nor blocked by the PKC inhibitor GF109203X. Rottlerin was not effective in blocking PKCdelta activity in vitro. Exposure of freshly isolated parotid acinar cells to rottlerin and FCCP reduced cellular ATP levels and reduced stimuli-dependent increases in tyrosine phosphorylation of PKCdelta. Neither rottlerin nor FCCP reduced stimuli-dependent PKCdelta tyrosine phosphorylation in RPG1 cells (a salivary ductal line) or PC12 cells, consistent with their dependence on glycolysis rather than oxidative phosphorylation for energy-dependent processes. These results demonstrate that rottlerin directly uncouples mitochondrial respiration from oxidative phosphorylation. Previous studies using rottlerin should be evaluated cautiously.  相似文献   

14.
We show that incubation of rat liver mitochondria in the presence of [gamma-32P]ATP results in cAMP-dependent phosphorylation of a low-molecular-weight (3.5-kD) polypeptide (LMWP). This component is tightly bound to the mitochondrial membrane. It is not released into solution after freezing and subsequent thawing of the mitochondrial suspension and does not incorporate 32P from [gamma-32P]ATP in the presence of uncouplers of oxidative phosphorylation. Inhibition of adenine nucleotide transport into the mitochondrial matrix by carboxyatractyloside suppresses phosphorylation of the LMWP. Moderate Ca2+ loading of mitochondria increases both phosphorylation and dephosphorylation of the LMWP. Chelation of Ca2+ by incubation in the presence of EGTA suppresses incorporation of 32P into the LMWP.  相似文献   

15.
Crosslinking of surface-exposed domains on certain Chlamydomonas flagellar membrane glycoproteins induces their movement within the plane of the flagellar membrane. Previous work has shown that these membrane glycoprotein movements are dependent on a critical concentration of free calcium in the medium and are inhibited reversibly by calcium channel blockers and the protein kinase inhibitors H-7, H-8, and staurosporine. These observations suggest that the flagellum may use a signaling pathway that involves calcium-activated protein phosphorylation to initiate flagellar membrane glycoprotein movements. In order to pursue this hypothesis, we examined the calcium dependence of phosphorylation of flagellar membrane-matrix proteins using an in vitro system containing [gamma-32P]ATP or [35S]ATP gamma S. Using only endogenous enzymes and endogenous substrates found in the membrane-matrix fraction obtained by extraction of flagella with 0.05% Nonidet P-40, we observed both calcium-independent protein phosphorylation and calcium-dependent protein phosphorylation in addition to an active protein dephosphorylation activity. Addition of micromolar free calcium increased the amount of protein phosphorylation severalfold. Calcium-activated protein kinase activity was inhibited by H-7, H-8, and staurosporine, the same protein kinase inhibitors that inhibit the calcium-dependent glycoprotein redistribution in vivo. A small group of polypeptides in the 26-58 kDa range exhibited a dramatic increase in phosphorylation in the presence of 20 microM free calcium. We suggest that Chlamydomonas utilizes the intraflagellar free calcium concentration to regulate the phosphorylation of specific flagellar proteins in the membrane-matrix fraction, one or more of which may be involved in regulating the machinery responsible for flagellar membrane glycoprotein redistribution.  相似文献   

16.
The dephosphorylation of the mouse small heat shock protein hsp25 within an extract obtained from Ehrlich ascites tumor cells is inhibited by the calcium chelator EGTA and at concentrations of microcystin-LR which are characteristic for inhibition of calcium/calmodulin-dependent (2B type) protein phosphatases. Furthermore, the dephosphorylation of hsp25 in the cell-free system derived from Ehrlich ascites tumor could be increased specifically by addition of the calcium/calmodulin-dependent (2B type) protein phosphatase calcineurin. Dephosphorylation of the heat shock protein hsp25 is also obtained in an in vitro system containing phosphorylated recombinant hsp25, 1 mM Ca2+, calmodulin, and calcineurin specifying hsp25 as the direct substrate for this enzyme. The expression of two isoforms of the catalytic subunit of the mouse calcium/calmodulin-dependent (2B type) protein phosphatases in Ehrlich ascites tumor cells is demonstrated by polymerase chain reaction using specific oligonucleotide primers to the catalytic and calmodulin-binding domain, respectively. Northern blot analysis using the amplified fragments as probes shows that the mRNA of one isoform of the mouse calcium/calmodulin-dependent protein phosphatase is of medium abundance in EAT cells. These data suggest a calcium/calmodulin-dependent dephosphorylation of the small stress protein in EAT cells also in vivo. Since it is known that heat shock increases the intracellular calcium level and that thermotolerance is influenced by calcium chelators, ionophores, and anti-calmodulin drugs, the changes in the degree of hsp25 phosphorylation induced by thermal stress resulting in an altered thermoresistance could be explained at least partially by the calcium/calmodulin-dependent dephosphorylation through protein phosphatases 2B.  相似文献   

17.
Depolarization of nerve terminals stimulates rapid dephosphorylation of two isoforms of dynamin I (dynI), mediated by the calcium-dependent phosphatase calcineurin (CaN). Dephosphorylation at the major phosphorylation sites Ser-774/778 promotes a dynI-syndapin I interaction for a specific mode of synaptic vesicle endocytosis called activity-dependent bulk endocytosis (ADBE). DynI has two main splice variants at its extreme C terminus, long or short (dynIxa and dynIxb) varying only by 20 (xa) or 7 (xb) residues. Recombinant GST fusion proteins of dynIxa and dynIxb proline-rich domains (PRDs) were used to pull down interacting proteins from rat brain nerve terminals. Both bound equally to syndapin, but dynIxb PRD exclusively bound to the catalytic subunit of CaNA, which recruited CaNB. Binding of CaN was increased in the presence of calcium and was accompanied by further recruitment of calmodulin. Point mutations showed that the entire C terminus of dynIxb is a CaN docking site related to a conserved CaN docking motif (PXIXI(T/S)). This sequence is unique to dynIxb among all other dynamin variants or genes. Peptide mimetics of the dynIxb tail blocked CaN binding in vitro and selectively inhibited depolarization-evoked dynI dephosphorylation in nerve terminals but not of other dephosphins. Therefore, docking to dynIxb is required for the regulation of both dynI splice variants, yet it does not regulate the phosphorylation cycle of other dephosphins. The peptide blocked ADBE, but not clathrin-mediated endocytosis of synaptic vesicles. Our results indicate that Ca(2+) influx regulates assembly of a fully active CaN-calmodulin complex selectively on the tail of dynIxb and that the complex is recruited to sites of ADBE in nerve terminals.  相似文献   

18.
Cofilin, an essential regulator of actin filament dynamics, is inactivated by phosphorylation at Ser-3 and reactivated by dephosphorylation. Although cofilin undergoes dephosphorylation in response to extracellular stimuli that elevate intracellular Ca2+ concentrations, signaling mechanisms mediating Ca2+-induced cofilin dephosphorylation have remained unknown. We investigated the role of Slingshot (SSH) 1L, a member of a SSH family of protein phosphatases, in mediating Ca2+-induced cofilin dephosphorylation. The Ca2+ ionophore A23187 and Ca2+-mobilizing agonists, ATP and histamine, induced SSH1L activation and cofilin dephosphorylation in cultured cells. A23187- or histamine-induced SSH1L activation and cofilin dephosphorylation were blocked by calcineurin inhibitors or a dominant-negative form of calcineurin, indicating that calcineurin mediates Ca2+-induced SSH1L activation and cofilin dephosphorylation. Importantly, knockdown of SSH1L expression by RNA interference abolished A23187- or calcineurin-induced cofilin dephosphorylation. Furthermore, calcineurin dephosphorylated SSH1L and increased the cofilin-phosphatase activity of SSH1L in cell-free assays. Based on these findings, we suggest that Ca2+-induced cofilin dephosphorylation is mediated by calcineurin-dependent activation of SSH1L.  相似文献   

19.
M M Rozdzial  L T Haimo 《Cell》1986,47(6):1061-1070
Studies were conducted to investigate the molecular basis for bidirectional pigment granule transport in digitonin-lysed melanophores. Pigment granule dispersion, but not aggregation, required cAMP and resulted in the phosphorylation of a 57 kd polypeptide. cAMP-dependent protein kinase inhibitor prevented this phosphorylation as well as pigment dispersal. In contrast, both pigment aggregation and the concomitant dephosphorylation of the 57 kd polypeptide were blocked by phosphatase inhibitors. These data support a model in which pigment dispersion and aggregation require protein phosphorylation and dephosphorylation, respectively. Furthermore, studies using the ATP analog, ATP gamma S, suggest either that protein phosphorylation alone is sufficient for dispersion or that transport is mediated by a unique force-generating ATPase that can use ATP gamma S for hydrolyzable energy.  相似文献   

20.
The role of calcium in the parathyroid hormone-mediated increase in 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) production was evaluated using isolated proximal tubules from rats fed a low calcium diet (0.002% Ca) for 14 days. Tubules were prepared by collagenase digestion and centrifugation through Percoll. Tubules from rats fed a low calcium diet produced 1,25-(OH)2D3 at rates 10 times that of tubules from rats fed normal calcium diet (1.2% Ca). In vitro 1,25-(OH)2D3 biosynthesis was highly dependent upon extracellular calcium with inhibition in the absence of medium calcium and maximal production at 0.25 mM medium calcium (0.9 +/- 0.25 versus 15.1 +/- 2.3 nmol/mg protein/5 min, p less than 0.03). Inhibition of 1,25-(OH)2D3 production was partly due to depressed ATP content (0 versus 1.2 mM calcium, 6.8 +/- 0.6 versus 12.7 +/- 0.6 nmol/mg protein, p less than 0.006). EGTA reduced 1,25-(OH)2D3 synthesis and total cell calcium and ATP production. Ruthenium red blocked the inhibitory effects of EGTA on 1,25-(OH)2D3 production. Barium (1.0 mM) inhibited 1,25-(OH)2D3 production (7.2 +/- 0.5 versus 3.4 +/- 0.3, p less than 0.001) without altering ATP production. The calcium ionophore A23187 increased 1,25-(OH)2D3 production in a calcium-dependent manner. It is concluded that parathyroid hormone-mediated increases in 1,25-(OH)2D3 production, as during low calcium diet, require extracellular calcium. Extracellular calcium maintains mitochondrial calcium at optimal concentrations for normal ATP production, a requirement for 25-hydroxyvitamin D3-1-hydroxylase (25-OH-D3-1-hydroxylase) activity. Inhibition of 25-OH-D3-1-hydroxylase activity by barium without an alteration of ATP suggests calcium may also control 1,25-(OH)2D3 production independent of its effects on oxidative phosphorylation, perhaps through a direct interaction with one or more components of the 25-OH-D3-1-hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号