首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
1. UDPgalactose:glycoprotein galactosyltransferase (EC 2.4.1.-) activity was demonstrated in homogenates from whole rat brain, isolated neuromal perikarya, enriched glial cell fractions, and cultured rat glial tumor cells (clone C6). 2. Galactosyltransferase activity was enriched 3-9-fold in neuronal perikarya and 1.4--1.8-fold in the glial cell fraction over the activity in whole brains from 19- and 40-day-old rats. The activity of galactosyltransferase in neuronal perikarya decreased with age. Extensive contamination of the glial cell fraction with membranous fragments appeared to obscure the precise specific activity of this fraction. 3. The specific activity of the enzyme in glial tumor cells was 4--8-fold higher than in brain tissue when the enzyme was assayed under identical conditions using endogenous and different exogenous acceptors. 4. Galactosyltransferase activities from adult brain and glial tumor cells had similar properties. They both required Mn-2 plus and Triton, and exhibited pH optima between 5 and 7. The apparent Km of the enzyme for UDPgalactose was 1.3-10-minus 4 M for brain tissue and 2.2-10-minus 4 M for glial tumor cells. 5. The high galactosyltransferase activity in glial tumor cells and in neuronal perikarya of younger rats is compatible with the possibility of a role of this enzyme in developing brain.  相似文献   

5.
1. Various types of nuclear preparations, with different ratios of neuronal to glial nuclei, were isolated from guinea-pig cerebral grey matter and ox cerebral grey matter and white matter. Conditions appropriate for the separate assay of RNA and poly A formation were described. Comparative rates of RNA and poly A formation were studied in cerebral and liver nuclei. 2. RNA polymerase activity per nucleus is higher in neuronal nuclei than in glial nuclei. In liver nuclei, the activity is much lower than in cerebral nuclei. The physical relationship between RNA polymerase and deoxyribonucleoprotein seems to differ in neuronal, glial and liver nuclei. 3. Poly A polymerase activity in liver nuclei is selectively activated by Mn(2+) and inhibited by GTP, CTP and UTP. On a DNA basis, the activity in an aggregate enzyme is the same as in intact nuclei. Poly A polymerase activity per nucleus is much higher in liver nuclei than in neuronal nuclei. Glial nuclei show an intermediate activity. 4. It is suggested that, in neuronal nuclei, the synthesis of RNA is more prominent than that of poly A under conditions where both polymers are formed simultaneously. This contrasts with liver nuclei, where more poly A is made than RNA. 5. In neuronal nuclei, the rate of CTP incorporation is much higher than in glial and liver nuclei. This incorporation is most probably due to poly C synthesis.  相似文献   

6.
The process of methylation of chromosomal proteins [histones and nonhistone proteins (NHP)] in neuronal and glial cell nuclei obtained from cerebral hemispheres of rats at 1, 10, and 30 days of age was investigated. Purified neuronal and glial nuclei were incubated in the presence of S-adenosyl[methyl-3H]methionine. Histone and NHPs were extracted and fractionated by polyacrylamide gel electrophoresis. The results obtained indicate remarkable differences in the process of methylation of histones and NHPs between neuronal and glial nuclei, especially during the first period of postnatal development. In both nuclear populations the histone fraction H3 was labeled to a greater degree than the other fractions and showed the major changes during postnatal development. The densitometric and radioactive patterns of NHPs show considerable changes in the two nuclear populations at the various ages examined. The main difference between neuronal and glial nuclei consists in the intense methylation of proteins with a molecular weight of approximately 100,000, which are present in neuronal nuclei and virtually absent in glial ones. The results obtained may be correlated with the different chromatin structures of neuronal and glial nuclei and with the patterns of maturation and differentiation of neuronal and glial cells during postnatal development.  相似文献   

7.
A method is presented for the rapid separation of cell nuclei from the rabbit cerebral cortex into two populations. The first of these consists largely of nuclei with the morphological characteristics of neuronal nuclei, the second almost entirely of nuclei with the morphological characteristics of glial cell nuclei. From studies based upon sensitivity to the toxin α-amanitin, the ratio of incorporation of different bases, ionic requirements and differential sensitivity to actinomycin D, it is concluded that under both the classical low and high salt conditions described by other workers, two enzymes are active in RNA synthesis. The presence of a third enzyme of low activity cannot be excluded. No qualitative difference in the number of enzymes involved in RNA synthesis in neuronal and glial cell nuclei has been found, but there are quantitative differences in activity between the two nuclear populations.  相似文献   

8.
Abstract– The method of T hompson (1973) for isolation and fractionation of brain nuclei was modified by the introduction of 12mM-Mg2+ in the isolating media. This technique gives a good yield of pure (85-90%) neuronal and glial rat brain nuclei, with minimal disruption of nuclei and degradation or processing of nuclear RNA. The RNA/DNA ratio of neuronal nuclei is about 3-fold higher than that of glial nuclei. Analysis of nucleolar RNA fractions by urea-agar gel electrophoresis allows the identification of 45S, 41S, 39S, 36S, 32S and 21S pre-rRNA components. The pattern of nucleolar pre-rRNA and rRNA species in neuronal and glial nuclei is identical. These results demonstrate the existence in brain nuclei of multiple pre-rRNA processing pathways qualitatively similar to those observed in other animal tissues.  相似文献   

9.
—The incorporation of [3H]thymidine into nuclear DNA of rat brain progressively increased from birth until the 8th postnatal day and it was lowest in the adult brain. When isolated nuclei from brain cells were separated into a neuronal- and a glial-rich fraction (composed of glial and neuroblast nuclei in young animals), the specific radioactivity of the DNA was higher in the glial-rich fraction at all ages investigated. The incorporation of [3H]leucine into proteins of rat brain was considerably higher in the 8-than in the 1-day-old rat. The greatest difference in the rate of protein synthesis between 8- and 1-day-old brain occurred in the nuclear proteins, especially those associated with DNA. There was an accumulation of protein and RNA in nuclei from brain cells from birth to the 8th postnatal day. The increased content of proteins occurred primarily in the fraction soluble in buffered saline (nuclear sap).  相似文献   

10.
The nuclear poly(ADP-ribose)polymerase activity of neuronal and glial cells during postnatal development of rats was studied. It was shown that the poly(ADP-ribose)polymerase activity of nuclei and nuclear matrix of neuronal cells during postnatal development of rats is increased, whereas the polymerase activity of glial cell nuclei and nuclear matrix in newborn and adult rats is higher than in 14-day-old animals. The DNA-topoisomerase II activity of neuronal nuclear matrix during the postnatal development of rats does not change, whereas the topoisomerase activity of glial nuclear matrix decreases but is always higher than the DNA-topoisomerase II activity of neuronal cell matrix during the postnatal development of rats. It is suggested that ADP-ribosylation in the nuclear matrix of neuronal cells causes the inhibition of the DNA-topoisomerase II activity of nuclear matrix.  相似文献   

11.
We have investigated two characteristics of the glutamate system in the developing rabbit retina. 1) Glutamate immunoreactivity was observed at birth within developing processes of four cell types; two of which, photoreceptors and ganglion cells, are known to be glutamatergic in the adult. Two other cell types, type A horizontal cells and amacrine cells, are immunoreactive to both glutamate and GABA at birth, suggesting that endogenous pools of glutamate in GABAergic neurons serve as precursor for GABA synthesis. Thus it appears that endogenous glutamate pools are present within neurons prior to synaptogenesis as part of the early expression of either the glutamate or GABA transmitter phenotype. 2) Analysis of3H-glutamate metabolism during retinal development showed that rapid conversion of glutamate to glutamine does not occur until the second postnatal week, coincident with the expression of Muller (glial) cell activity. In the absence of glial metabolism in the neonate, extracellular concentrations of glutamate remain relatively high and are likely to have major effects on neuronal maturation.Special issue dedicated to Dr. Frederick E. Samson  相似文献   

12.
Abstract: Ischemia, anoxia, and hypoxia of the brain have been shown to inhibit protein synthesis in the central nervous system. To obtain data on the changes in DNA-dependent RNA and DNA polymerases as they pertain specifically to neurons and glia, nuclear enriched neuronal and glial fractions were prepared, by sucrose-gradient centrifugation, from spinal cords of adult dogs that had been subjected to prolonged ischemia. The isolated fractions were assayed for enzyme activity by a radiochemical technique. RNA polymerase was affected more than DNA polymerase, activity being reduced considerably in both neurons and glia. Possible causes of the difference in sensitivity to ischemia are discussed.  相似文献   

13.
14.
The administration of thyroxine to neonatal rats stimulates RNA synthesis by neuronal nuclei isolated from the developing rat brain cortex. Glial nuclei are relatively resistant to thyroxine treatment. The activity of neuronal RNA polymerase II is particularly stimulated by the hormone. Thyroxine also affects neuronal chromatin structure as shown by changes in the relative proportion of different subnuclear fractions obtained by gentle micrococcal nuclease digestion of nuclei from hormone-treated rats.  相似文献   

15.
Abstract— Mouse brain nuclei were incubated in vitro under conditions that primarily lead to the synthesis of radioactive polydisperse and messengerlike nuclear RNA. After incubation the effects of Mg2 concentrations, nucleoside triphosphate levels and brain cytosol were examined with regard to their ability to influence the release of RNA from brain nuclei. The presence of 8 mM -MgCl2 and a total of 0.3 mM-nuclcoside triphosphates during the labelling procedure allowed only a minimal amount of RNA to be released. However, when the MgCl2 was decreased to 2 mM and the nucleoside triphosphates were increased to 1 mM, a stimulation of RNA release was observed. The addition of unfractionated brain cytosol under these conditions resulted in an inhibition of RNA release.
G-100 Sephadex filtration removed detectable RNase activity from the cytosol preparations and allowed the identification of fractions that were able to facilitate nuclear RNA release by 3-fold. The fractions that stimulated release did not have detectable levels of RNase, protease or DNA-dependenl RNA polymerase. Under conditions that provided maximum nuclear RNA release by both labelled mouse brain and neuroblastoma nuclei, no release of DNA could be measured. The cytosol fractions that facilitated RNA release did not have a high affinity for nuclear RNA or an ability to stimulate nuclear RNA synthesis. However, other components in the cytosol were shown to stimulate RNA metabolism in isolated mouse brain nuclei and to have a relatively high binding affinity to nuclear RNA. Further purification of the RNA release components in the brain cytosol by DEAF. Sephadex chromatography allowed an increase in specific activity of at least 40-fold. The thermal lability, effective filtration size, and solubility in phenol suggested that the cytosol factors that facilitiated nuclear RNA release were associated with cellular proteins.  相似文献   

16.
17.
RNA synthesis in rat cerebral hemispheres at 1, 5, and 10 days of age and the relative contribution brought by neuronal and glial nuclei to RNA synthesis was investigated. The experiments were carried out both in vivo (by i.p. injection of [3H]uridine) and in vitro (either by incubation of tissue slices with [3H]uridine or by determination of RNA polymerase activities). The labeling of RNA decreases from 1 to 10 days of age both in vivo and in vitro; the decrease is of the same extent in neuronal and glial nuclei. RNA polymerase activity Mg2+-dependent does not change significantly from 1 to 10 days of age either in total, in neuronal, or in glial nuclei, whereas the Mn2+-dependent activity increases significantly over the same developmental period studied. The significance of RNA polymerase assay as an index of in vivo RNA synthesis is discussed.  相似文献   

18.
RNA polymerase activities of whole nuclei, of isolated and purified nucleoli and of the nucleoplasmic fractions obtained from cerebral hemispheres, cerebellum and brain stem of rat at different days of postnatal development have been determined. In the whole nuclei the fraction of RNA polymerase which is sensitive to alpha-amanitin, is strongly affected by salt concentration; at low ionic strength most of the activity is resistant to the drug while at high ionic strength the enzymatic activity shows a greater sensitivity to the drug. In isolated nucleoli RNA synthesis is not inhibited at all by alpha-amanitin. The biosynthesis of RNA, at low ionic strength, is inhibited by low doses of actinomycin D, whereas at high ionic strength it is remarkably inhibited only by higher doses of the drug. The sensitivity of the reaction to alpha-amanitin and actinomycin D provide good evidence that UTP or GTP incorporation into RNA in purified nuclei and nucleoli, is dependent on RNA polymerases acting on DNA template and is not dependent on homopolymer formation. These results show that in the whole brain nuclei at low ionic strength there is a preferential synthesis of rRNA, whereas at high ionic strength the synthesis of heterogenous RNA predominates. In isolated nucleoli the synthesis of RNA is restricted to rRNA.  相似文献   

19.
Purified neuronal and glial nuclei were separated from rat brain cells. The fraction rich in neuronal nuclei contained 68 ± 9 per cent neuronal nuclei and the fraction rich in glial nuclei contained 89 ± 6 per cent glial nuclei. The fraction rich in neuronal nuclei isolated from cells of adult rat brain incorporated l -[4,5-3H]leucine into TCA-insoluble material at a rate comparable to those of the microsomal and the soluble fractions of the brain, and at a much higher rate than the fraction rich in glial nuclei. The proteins soluble in buffered-saline, the acid-soluble deoxyribonucleoproteins, and the residual proteins of the neuronal nuclei are apparently the proteins which account for the higher specific activity of neuronal proteins compared with glial nuclear proteins. In liver and kidney, the incorporation of [3H]leucine into nuclear proteins was lower than into other subcellular fractions from the same organs.  相似文献   

20.
SYNTHESIS OF NUCLEAR RNA IN NERVE AND GLIAL CELLS   总被引:5,自引:2,他引:3  
—Tritium-labelled RNA precursors were injected at 30 min intervals into the fourth ventricle of rats or rabbits. After 4 h the nuclei from neurones, astrocytes, and other glial cells were isolated and RNA extracted. Investigations were performed in order to establish optimum conditions for RNA extraction from this particular material. The sedimentation patterns obtained in sucrose gradients were similar to those of nuclear RNA from other mammalian tissues and showed the presence of RNA species with high specific activities in the region of the gradient between 10S and 16S and above 28S. All three types of nuclei contained a 45S and a 38S RNA. Moreover, a 32S component could be identified in astrocytic nuclei, a 35S fraction in neuronal nuclei, and both a 32S and 35S RNA in nuclei from glial cells. The nuclei from the various cell types also differ with respect to the rate of incorporation of the label into the nuclear RNA, being four times higher in astrocytic and neuronal nuclei than in those derived from the other glial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号