首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ko YT  Bickel U  Huang J 《Oligonucleotides》2011,21(2):109-114
To advance knowledge on polyplex structure and composition, fluorescence resonance energy transfer (FRET) and anisotropy measurements were applied to polyplexes of rhodamine-labeled polyethylenimine (PEI) and fluorescein-labeled double-stranded oligodeoxynucleotide (ODN). About 25?kDa PEI was compared with low-molecular-weight PEI of 2.7?kDa. FRET reached maxima at amine to phosphate (N/P) ratios of 2 and 3 for 2.7?kDa and 25?kDa PEI, respectively, with similar average distances between donor and acceptor dye molecules in polyplexes. Anisotropy measurements allowed estimating the bound fractions of PEI and ODN. At N/P?=?6, all ODN was bound, but only 58% of PEI 25?kDa and 45% of PEI 2.7?kDa. In conclusion, the higher molecular weight of PEI may conformationally restrict the availability of amino groups for charge interaction with phosphate groups in ODN. Moreover, significant fractions of both types of PEI remain free in solution at N/P ratios frequently used for transfection. FRET and anisotropy measurements provide effective tools for probing polyplex compositions and designing optimized delivery systems.  相似文献   

2.
This study aimed to investigate the feasibility of using a cationic nonviral gene carrier in endothelial cells for enhancing gene expression by the addition of an integrin-binding RGD peptide. A 4-branched cationic polymer of poly( N,N-dimethylaminopropylacrylamide) (star vector), developed as a gene carrier, could complex with the luciferase-encoding plasmid DNA under a charge ratio of 5 (vector/pDNA) to form polymer/DNA complexes (polyplexes). The addition of the RGD-containing peptide (GRGDNP) to the polyplex solution led to a decrease in the zeta-potential from ca. +30 to +20 mV along with the reduction in the particle size from ca. 300 to 200 nm. Additionally, a marked inhibition of polyplex aggregation was observed, indicating the coating of the polyplex surface with RGD peptides. A transfection study on endothelial cells showed that the luciferase activity increased with the amount of RGD peptides added to the polyplexes and exhibited minimal cellular cytotoxicity. The transfection activity further increased when cyclic RGD peptides (RGDFV) were used; the activity with RGD peptide addition was approximately 8-fold compared to that without RGD peptide addition. Gene delivery to endothelial cells was significantly enhanced by only the addition of RGD peptides to star vector-based polyplexes.  相似文献   

3.
Lin S  Du F  Wang Y  Ji S  Liang D  Yu L  Li Z 《Biomacromolecules》2008,9(1):109-115
Intelligent gene delivery systems based on physiologically triggered reversible shielding technology have evinced enormous interest due to their potential in vivo applications. In the present work, an acid-labile block copolymer consisting of poly(ethylene glycol) and poly(2-(dimethylamino)ethyl methacrylate) segments connected through a cyclic ortho ester linkage (PEG- a-PDMAEMA) was synthesized by atom transfer radical polymerization of DMAEMA using a PEG macroinitiator with an acid-cleavable end group. PEG- a-PDMAEMA condensed with plasmid DNA formed polyplex nanoparticles with an acid-triggered reversible PEG shield. The pH-dependent shielding/deshielding effect of PEG chains on the polyplex particles were evaluated by zeta potential and size measurements. At pH 7.4, polyplexes generated from PEG- a-PDMAEMA exhibited smaller particle size, lower surface charge, reduced interaction with erythrocytes, and less cytotoxicity compared to PDMAEMA-derived polyplexes. At pH 5.0, zeta potential of polyplexes formed from PEG- a-PDMAEMA increased, leveled up after 2 h of incubation and gradual aggregation occurred in the presence of bovine serum albumin (BSA). In contrast, the stably shielded polyplexes formed by DNA and an acid-stable block copolymer, PEG- b-PDMAEMA, did not change in size and zeta potential in 6 h. In vitro transfection efficiency of the acid-labile copolymer greatly increased after 6 h incubation at pH 5.0, approaching the same level of PDMAEMA, whereas there was only slight increase in efficiency for the stable copolymer, PEG- b-PDMAEMA.  相似文献   

4.
Inefficient delivery of antisense oligonucleotides (AOs) to target cell nuclei remains as the foremost limitation to their usefulness. Copolymers of cationic poly(ethylene imine) (PEI) and poly(ethylene glycol) (PEG) have been well-studied for delivery of plasmids. However, the properties of PEG-PEI-AO polyplexes have not been comprehensively investigated. Therefore, we synthesized a series of PEG-PEI copolymers and evaluated their physiochemical properties alone and when complexed with AO. The M(w) of PEG was found to be the main determinant of polyplex size, via its influence on particle aggregation. DLS measurements showed that when PEG5000 was grafted to PEI2K and PEI25K, polyplex diameters were extremely small (range 10-90 nm) with minimal aggregation. In contrast, when PEG550 was grafted to PEI2K and PEI25K, polyplexes appeared as much larger aggregates (approximately 250 nm). As expected, the surface charge (zeta potential) was higher for polyplexes containing PEI25K than those containing PEI2K, but decreased with increased levels of PEG grafting. Surprisingly, within the physiological range (pH 7.5-5), the buffering capacity of all copolymers was nearly equivalent to that of unsubstituted PEI2K or PEI25K, and was barely influenced by PEGylation. The stability of polyplexes was evaluated using a heparin polyanion competition assay. Unexpectedly, polyplexes containing PEI2K showed stability equal to or greater than that of PEI25K polyplexes. The level of PEG grafting also had a dramatic effect on polyplex stability. The relationships established between molecular formulations and polyplex size, aggregation, surface charge, and stability should provide a useful guide for future studies aimed at optimizing polymer-mediated AO delivery in cell and animal studies. A summary of the relationships between polyplex structures and recent studies of their transfection capacity is provided.  相似文献   

5.
In vitro assays have demonstrated the capability of poly-L-lysine to protect plasmid DNA from serum nucleases and cellular lysates. Our purpose was to evaluate the stability and potency of poly-L-lysine-DNA polyplexes after intravenous injection into mice. Polyplexes consisted of 32P-radiolabeled plasmid DNA complexed with poly-L-lysine at specified charge ratios. Variations in conjugate hydrophobicity and levels of modification with polyethylene glycol were investigated. Our results show that, in contrast to in vitro studies, the systemically administered polyplexes exhibited marked DNA degradation in the vascular compartment within 5 min. Substitution of poly-L-lysine epsilon-amino sites with polyethylene glycol or hydrocarbon chains resulted in faster degradation even when complexed at higher charge (+/-) ratios. Use of excess cationic charge in the polyplexes (+/- 2.5) diminished degradation rates only slightly. An analysis was made of the strength of the poly-L-lysine:DNA interaction by competition with poly-aspartic acid. Polyplexes with the strongest binding between conjugate and DNA in the competition assay were also the most stable in blood. However, tighter binding was not enough to fully protect the polyplex in vivo and polyplex DNA was substantially degraded within 10 min. Increased polyplex stability did not correlate with improved in vivo transfection efficiency.  相似文献   

6.
Ko YT  Bickel U 《AAPS PharmSciTech》2012,13(2):373-378
Liposome-encapsulated polyplex system represents a promising delivery system for oligonucleotide-based therapeutics such as siRNA and asODN. Here, we report a novel method to prepare liposome-encapsulated cationic polymer/oligonucleotide polyplexes based on the reverse-phase evaporation following organic extraction of the polyplexes. The polyplexes of polyethylenimine and oligonucleotide were first formed in aqueous buffer at an N/P ratio of 6. The overall positively charged polyplexes were then mixed with the anionic phospholipids in overall organic media. The overall organic environment and electrostatic interaction between anionic phospholipids and positively charged polyplexes resulted in inverted micelle-like particles with the polyplexes in the core. After phase separation, the hydrophobic particles were recovered in organic phase. Reverse-phase evaporation of the organic solvent in the presence of hydrophilic polymer-grafted lipids resulted in a stable aqueous dispersion of hydrophilic lipid-coated particles with the polyplex in the core. Transmission electron microscopy visualization revealed spherical structures with heavily stained polyplex cores surrounded by lightly stained lipid coats. The lipid-coated polyplex particles showed colloidal stability, complete protection of the loaded oligonucleotide molecules from enzymatic degradation, and high loading efficiency of more than 80%. Thus, this technique represents an alternative method to prepare lipid-coated polyplex particles as a delivery system of oligonucleotide therapeutics.  相似文献   

7.
We synthesized a novel arginine-grafted dendritic block copolymer, R-PAMAM-PEG-PAMAM-R G5 (PPP5-R) for gene delivery systems. Its Mw was measured as 2.74 x 104 Da by MALDI-TOF, and approximately 36 arginine residues are found to be grafted to the polymer by 1H NMR. PPP5-R was able to form polyplexes with plasmid DNA, the average size of which was about 200 nm. Positive zeta-potential values (+22 to +28 mV) of PPP5-R polyplex indicate the formation of positively charged stable polyplex particles and suggest that large dendritic blocks with high positive charge may not be fully shielded by PEG chains even after PEG-coated complex formation. PPP5-R polyplex shows enhanced water solubility due to the polymer's PEG core and also shows low cytotoxicity, representing the potential for in vivo application. We identified the greatly enhanced transfection efficiency of PPP5-R in comparison with that of native PPP5 on various cell lines. Moreover, in view of the result of various cellular uptake inhibitor treatments during a transfection step, the cellular uptake of PPP5-R polyplex leading to effective transfection is thought to be not dependent on one exclusive pathway and to have the possibility of multiple pathways (caveolae-, clathrin-, and macropinocytosis-mediated pathways), contrary to the caveolae-dependent uptake of the PPP5 polyplex lacking arginine residues.  相似文献   

8.
Conventional free radical polymerization with subsequent postpolymerization modification afforded imidazolium copolymers with controlled charge density and side chain hydroxyl number. Novel imidazolium-containing copolymers where each permanent cation contained one or two adjacent hydroxyls allowed precise structure-transfection efficiency studies. The degree of polymerization was identical for all copolymers to eliminate the influence of molecular weight on transfection efficiency. DNA binding, cytotoxicity, and in vitro gene transfection in African green monkey COS-7 cells revealed structure-property-transfection relationships for the copolymers. DNA gel shift assays indicated that higher charge densities and hydroxyl concentrations increased DNA binding. As the charge density of the copolymers increased, toxicity of the copolymers also increased; however, as hydroxyl concentration increased, cytotoxicity remained constant. Changing both charge density and hydroxyl levels in a systematic fashion revealed a dramatic influence on transfection efficiency. Dynamic light scattering of the polyplexes, which were composed of copolymer concentrations required for the highest luciferase expression, showed an intermediate DNA-copolymer binding affinity. Our studies supported the conclusion that cationic copolymer binding affinity significantly impacts overall transfection efficiency of DNA delivery vehicles, and the incorporation of hydroxyl sites offers a less toxic and effective alternative to more conventional highly charged copolymers.  相似文献   

9.
Nonviral DNA complexes show promise as alternative and attractive gene delivery vectors for treating genetic diseases. Nonviral DNA complexes are typically formed by combining DNA with various condensing/complexing agents such as lipids, polyelectrolytes, polymers, polypeptides, and surfactants in solution. DNA/poly-L-lysine polyplex formation kinetics are probed by time-resolved multiangle laser light scattering (TR-MALLS), which yields the time evolution of the supramolecular complex mass and geometric size. Primary polyplexes whose geometric size is smaller than individual DNA molecules in solution are formed very rapidly upon mixing DNA and poly-L-lysine. Over time, these primary polyplexes aggregate into larger structures whose ultimate size is determined primarily by the relative concentrations of DNA and poly-L-lysine. This final polyplex size varies with the DNA/poly-L-lysine mass ratio in a non-monotonic fashion, with the maximum polyplex size occurring at a DNA/poly-L-lysine mass ratio of approximately two to three (charge ratio near unity). The utility of TR-MALLS for monitoring the temporal evolution of DNA loading and supramolecular complex size growth (mean square radius and molar mass) throughout the DNA/poly-L-lysine polyplex formation process is demonstrated. The polyplex DNA loading and size, both geometric and molar mass, are key to understanding the transfection process and for developing optimal gene therapy vectors.  相似文献   

10.
We have previously demonstrated that lipoplex, a complex of cationic liposomes and DNA, could be targeted to human hepatic cells in vitro and in vivo by conjugation with bio-nanocapsules (BNCs) comprising hepatitis B virus (HBV) surface antigen L protein particles. Because the BNC-lipoplex complexes were endowed with the human hepatic cell-specific infection machinery from HBV, the complexes showed excellent specific transfection efficiency in human hepatic cells. In this study, we have found that polyplex (a complex of polyethyleneimine (PEI) and DNA) could form stable complexes with BNCs spontaneously. The diameter and ζ-potential of BNC-polyplex complexes are about 240 nm and +3.54 mV, respectively, which make them more suitable for in vivo use than polyplex alone. BNC-polyplex complexes with an N/P ratio (the molar ratio of the amine group of PEI to the phosphate group of DNA) of 40 showed excellent transfection efficiency in human hepatic cells. When acidification of endosomes was inhibited by bafilomycin A1, the complexes showed higher transfection efficiency than polyplex itself, strongly suggesting that the complexes escaped from endosomes by both fusogenic activity of BNCs and proton sponge activity of polyplex. Furthermore, the cytotoxicity is comparable to that of polyplex of the same N/P value. Thus, BNC-polyplex complexes would be a promising gene delivery carrier for human liver-specific gene therapy.  相似文献   

11.
The purpose of this study was to explore the potential of using cationic polyethylenimine (PEI) to deliver green fluorescent protein (GFP) to protozoan parasite Toxoplasma gondii. PEI/DNA polyplexes were formed using branched PEI and pEGFP-N1 plasmid with various N/P ratios that ranged from 5 to 50. With the increment of N/P ratio, the average size of formed PEI/DNA polyplexes determined by dynamic light scattering analysis decreased from 306 to 203nm, while the surface charge of polyplexes obtained by zeta potential measurements increased from 20.2 to 36.7mV. Gene transfection efficiency modulated by N/P ratio was determined, indicating PEI/DNA polyplexes were capable of transfecting parasites. The maximal GFP expression was observed 8h post-transfection using N/P ratio of 30. To demonstrate the infectivity and potential use of GFP-expressing T. gondii, transfected parasites were inoculated to the monolayer of human foreskin fibroblast (HFF) cells. GFP-expressing tachyzoites were observed in intracellular milieu of the infected HFF cells one day after the infection. After 12-day culture, the bradyzoites expressing GFP within cysts were clearly visualized extracellularly. Our results revealed that PEI can be harnessed as an effective and inexpensive reagent to construct GFP-expressing T. gondii which has potential uses such as the study of interconversion stages and antimicrobial drug screening.  相似文献   

12.
Novel 4-branched diblock copolymers consisting of cationic chains as an inner domain and nonionic chains as an outer domain were prepared by iniferter-based living radial polymerization and evaluated as a polymeric transfectant. The cationic polymerization of 3-(N,N-dimethylamino)propyl acrylamide (DMAPAAm) using 1,2,4,5-tetrakis( N,N-diethyldithiocarbamylmethyl)benzene as a 4-functional iniferter followed by the nonionic block polymerization of N,N-dimethylacrylamide (DMAAm) afforded 4-branched diblock copolymers with controlled compositions. By changing the solution or irradiation conditions, 4-branched PDMAPAAms with molecular weights of 10,000, 20,000, and 50,000 were synthesized. In addition, by graft polymerization, PDMAPAAm-PDMAAm blocked copolymers with copolymer composition (unit ratio of DMAAm/DMAPAAm) ranging from 0.18 to 1.0 for each cationic polymer were synthesized. All polymers were shown to interact with and condense plasmid DNA to yield polymer/DNA complexes (polyplexes). A transfection study on COS-1 cells showed that the polyplexes from block copolymers with cationic chain length of approximately 50,000 and a nonionic chain length of 30,000, which were approximately 200 nm in diameter and very stable in aqueous media, had the most efficient luciferase activity with minimal cellular cytotoxicity under a charge ratio of 20 (vector/pDNA). The PDMAPAAm-PDMAAm-blocked, star-shaped polymers are an attractive novel class of nonviral gene delivery systems.  相似文献   

13.
Nonviral vectors for gene therapy have recently received an increased impetus because of the inherent safety problems of the viral vectors, while their transfection efficiency is generally low compared to the viral vectors. The lack of the ability to escape from the endosomal compartments is believed to be one of the critical barriers to the intracellular delivery of noviral gene vectors. This study was devoted to the design and preparation of a novel ABC triblock copolymer for constructing a pH-responsive and targetable nonviral gene vector. The copolymer, lactosylated poly(ethylene glycol)-block-poly(silamine)-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (Lac-PEG-PSAO-PAMA), consists of lactosylated poly(ethylene glycol) (A-segment), a pH-responsive polyamine segment (B-segment), and a DNA-condensing polyamine segment (C-segment). The Lac-PEG-PSAO-PAMA spontaneously associated with plasmid DNA (pDNA) to form three-layered polyplex micelles with a PAMA/pDNA polyion complex (PIC) core, an uncomplexed PSAO inner shell, and a lactosylated PEG outer shell, as confirmed by 1H NMR spectroscopy. Under physiological conditions, the Lac-PEG-PSAO-PAMA/pDNA polyplex micelles prepared at an N/P (number of amino groups in the copolymer/number of phosphate groups in pDNA) ratio above 3 were found to be able to condense pDNA, thus adopting a relatively small size (< 150 nm) and an almost neutral surface charge (zeta approximately +5 mV). The micelle underwent a pH-induced size variation (pH = 7.4, 132.6 nm --> pH = 4.0, 181.8 nm) presumably due to the conformational changes (globule-rod transition) of the uncomplexed PSAO chain in response to pH, leading to swelling of the free PSAO inner shell at lowered pH while retaining the condensed pDNA in the PAMA/pDNA PIC core. Furthermore, the micelles exhibited a specific cellular uptake into HuH-7 cells (hepatocytes) through asialoglycoprotein (ASGP) receptor-mediated endocytosis and achieved a far more efficient transfection ability of a reporter gene compared to the Lac-PEG-PSAO/pDNA and Lac-PEG-PAMA/pDNA polyplex micelles composed of the diblock copolymers and pDNA. The effect of hydroxychloroquine as an endosomolytic agent on the transfection efficiency was not observed for the Lac-PEG-PSAO-PAMA/pDNA polyplex micelles, whereas the nigericin treatment of the cell as an inhibitor for the endosomal acidification induced a substantial decrease in the transfection efficiency, suggesting that the protonation of the free PSAO inner shell in response to a pH decrease in the endosome might lead to the disruption of the endosome through buffering of the endosomal cavity. Therefore, the polyplex micelle composed of ABC (ligand-PEG/pH-responsive segment/DNA-condensing segment) triblock copolymer would be a promising approach to a targetable and endosome disruptive nonviral gene vector.  相似文献   

14.
Arginine-rich peptides have been used extensively as efficient cellular transporters. However, gene delivery with such peptides requires development of strategies to improve their efficiency. We had earlier demonstrated that addition of small amounts of exogenous glycosaminoglycans (GAGs) like heparan sulfate or chondroitin sulfate to different arginine-rich peptide–DNA complexes (polyplexes) led to an increase in their gene delivery efficiency. This was possibly due to the formation of a ‘GAG coat’ on the polyplex surface through electrostatic interactions which improved their extracellular stability and subsequent cellular entry. In this report, we have attempted to elucidate the differences in intracellular processing of the chondroitin sulfate (CS)-coated polyplexes in comparison to the native polyplexes by using a combination of endocytic inhibitors and co-localization with endosomal markers in various cell lines. We observed that both the native and CS-coated polyplexes are internalized by multiple endocytic pathways although in some cell lines, the coated polyplexes are taken up primarily by caveolae mediated endocytosis. In addition, the CS-coat improves the endosomal escape of the polyplexes as compared to the native polyplexes. Interestingly, during these intracellular events, exogenous CS is retained with the polyplexes until their accumulation near the nucleus. Thus we show for the first time that exogenous GAGs in small amounts improve intracellular routing and nuclear accumulation of arginine-based polyplexes. Therefore, addition of exogenous GAGs is a promising strategy to enhance the transfection efficiency of cationic arginine-rich peptides in multiple cell types.  相似文献   

15.
The effect of DNA vector topology when complexed to poly-l-lysine (PLL) and its quantification in transfection efficiency has not been fully addressed even though it is thought to be of importance from both production and regulatory viewpoints. This study investigates and quantifies cell uptake followed by transfection efficiency of PLL:DNA complexes (polyplexes) in Chinese hamster ovary (CHO) cells and their dependence on DNA topology. PLL is known for its ability to condense DNA and serve as an effective gene delivery vehicle. Characterization of PLL conjugated to a 6.9 kb plasmid was carried out. Dual labeling of both the plasmid DNA (pDNA) and PLL enabled quantitative tracking of the complexed as well as dissociated elements, within the cell, and their dependence on DNA topology. Polyplex uptake was quantified by confocal microscopy and image analysis. Supercoiled (SC) pDNA when complexed with PLL, forms a polyplex with a mean diameter of 139.06 nm (±0.84% relative standard error [RSE]), whereas open circular (OC) and linear-pDNA counterparts displayed mean diameters of 305.54 (±3.2% RSE) and 841.5 nm (±7.2% RSE) respectively. Complexes containing SC-pDNA were also more resistant to nuclease attack than its topological counterparts. Confocal microscope images reveal how the PLL and DNA remain bound post transfection. Quantification studies revealed that by 1 h post transfection 61% of SC-pDNA polyplexes were identified to be associated with the nucleus, in comparison to OC- (24.3%) and linear-pDNA polyplexes (3.5%) respectively. SC-pDNA polyplexes displayed the greatest transfection efficiency of 41% which dwarfed that of linear-pDNA polyplexes of 18.6%. Collectively these findings emphasize the importance of pDNA topology when complexed with PLL for gene delivery with the SC-form being a key pre-requisite.  相似文献   

16.
Novel ABA triblock copolymers consisting of low molecular weight linear polyethylenimine (PEI) as the A block and poly(ethylene glycol) (PEG) as the B block were prepared and evaluated as polymeric transfectant. The cationic polymerization of 2-methyl-2-oxazoline (MeOZO) using PEG-bis(tosylate) as a macroinitiator followed by acid hydrolysis afforded linear PEI-PEG-PEI triblock copolymers with controlled compositions. Two copolymers, PEI-PEG-PEI 2100-3400-2100 and 4000-3400-4000, were synthesized. Both copolymers were shown to interact with and condense plasmid DNA effectively to give polymer/DNA complexes (polyplexes) of small sizes (<100 nm) and moderate zeta-potentials (approximately +10 mV) at polymer/plasmid weight ratios > or =1.5/1. These polyplexes were able to efficiently transfect COS-7 cells and primary bovine endothelial cells (BAECs) in vitro. For example, PEI-PEG-PEI 4000-3400-4000 based polyplexes showed a transfection efficiency comparable to polyplexes of branched PEI 25000. The transfection activity of polyplexes of PEI-PEG-PEI 4000-3400-4000 in BAECs using luciferase as a reporter gene was 3-fold higher than that for linear PEI 25000/DNA formulations. Importantly, the presence of serum in the transfection medium had no inhibitive effect on the transfection activity of the PEI-PEG-PEI polyplexes. These PEI-PEG-PEI triblock copolymers displayed also an improved safety profile in comparison with high molecular weight PEIs, since the cytotoxicity of the polyplex formulations was very low under conditions where high transgene expression was found. Therefore, linear PEI-PEG-PEI triblock copolymers are an attractive novel class of nonviral gene delivery systems.  相似文献   

17.
RAFT polymerization successfully controlled the synthesis of phosphonium-based AB diblock copolymers for nonviral gene delivery. A stabilizing block of either oligo(ethylene glycol(9)) methyl ether methacrylate or 2-(methacryloxy)ethyl phosphorylcholine provided colloidal stability, and the phosphonium-containing cationic block of 4-vinylbenzyltributylphosphonium chloride induced electrostatic nucleic acid complexation. RAFT polymerization generated well-defined stabilizing blocks (M(n) = 25000 g/mol) and subsequent chain extension synthesized diblock copolymers with DPs of 25, 50, and 75 for the phosphonium-containing block. All diblock copolymers bound DNA efficiently at ± ratios of 1.0 in H(2)O, and polyplexes generated at ± ratios of 2.0 displayed hydrodynamic diameters between 100 and 200 nm. The resulting polyplexes exhibited excellent colloidal stability under physiological salt or serum conditions, and they maintained constant hydrodynamic diameters over 24 h. Cellular uptake studies using Cy5-labeled DNA confirmed reduced cellular uptake in COS-7 and HeLa cells and, consequently, resulted in low transfection in these cell lines. Serum transfection in HepaRG cells, which are a predictive cell line for in vivo transfection studies, showed successful transfection using all diblock copolymers with luciferase expression on the same order of magnitude as Jet-PEI. All diblock copolymers exhibited low cytotoxicity (>80% cell viability). Promising in vitro transfection and cytotoxicity results suggest future studies involving the in vivo applicability of these phosphonium-based diblock copolymer delivery vehicles.  相似文献   

18.
《Carbohydrate polymers》2013,94(1):436-443
Chitosan is widely explored as a gene delivery vehicle due to its ability to condense DNA, facilitate transport, and subsequent release allowing gene expression, as well as protecting the DNA. Here, we investigate the enhancement of chitosan–DNA dispersion stability while maintaining transfection efficacy by PEGylation of chitosan. Molecular properties of fully deacetylated chitosans and degree of PEGylation were investigated with respect to compaction of DNA, stability and transfection efficacy. Each of the three chitosan samples with varying chain lengths was PEGylated at three different degrees. The chitosans with degree of PEGylation from 0.6 to 1.9% made polyplexes with DNA. PBS induced colloidal aggregation of polyplexes with initial radius of about 100 nm observed for nonPEGylated chitosans was suppressed for 1.9% PEGylated chitosans. The observed increase in transfection efficacy coinciding with increased polyplex colloidal stability suggests that aggregation of gene-delivery packages may reduce the transfection efficacy.  相似文献   

19.
Reversibly shielded DNA polyplexes based on bioreducible poly(dimethylaminoethyl methacrylate)-SS-poly(ethylene glycol)-SS-poly(dimethylaminoethyl methacrylate) (PDMAEMA-SS-PEG-SS-PDMAEMA) triblock copolymers were designed, prepared and investigated for in vitro gene transfection. Two PDMAEMA-SS-PEG-SS-PDMAEMA copolymers with controlled compositions, 6.6-6-6.6 and 13-6-13 kDa, were obtained by reversible addition-fragmentation chain transfer (RAFT) polymerization of dimethylaminoethyl methacrylate (DMAEMA) using CPADN-SS-PEG-SS-CPADN (CPADN: 4-cyanopentanoic acid dithionaphthalenoate; PEG: 6 kDa) as a macro-RAFT agent. Like their nonreducible PDMAEMA-PEG-PDMAEMA analogues, PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers could effectively condense DNA into small particles with average diameters less than 120 nm and close to neutral zeta potentials (0 ~ +6 mV) at and above an N/P ratio of 3/1. The resulting polyplexes showed excellent colloidal stability against 150 mM NaCl, which contrasts with polyplexes of 20 kDa PDMAEMA homopolymer. In the presence of 10 mM dithiothreitol (DTT), however, polyplexes of PDMAEMA-SS-PEG-SS-PDMAEMA were rapidly deshielded and unpacked, as revealed by significant increase of positive surface charges as well as increase of particle sizes to over 1000 nm. Release of DNA in response to 10 mM DTT was further confirmed by gel retardation assays. These polyplexes, either stably or reversibly shielded, revealed a low cytotoxicity (over 80% cell viability) at and below an N/P ratio of 12/1. Notably, in vitro transfection studies showed that reversibly shielded polyplexes afforded up to 28 times higher transfection efficacy as compared to stably shielded control under otherwise the same conditions. Confocal laser scanning microscope (CLSM) studies revealed that reversibly shielded polyplexes efficiently delivered and released pDNA into the perinuclei region as well as nuclei of COS-7 cells. Hence, reduction-sensitive reversibly shielded DNA polyplexes based on PDMAEMA-SS-PEG-SS-PDMAEMA are highly promising for nonviral gene transfection.  相似文献   

20.
Non-viral transfection is a promising technique that could be used to increase the therapeutic potential of stem cells. The purpose of this study was to explore practical culture parameters of relevance in potential human mesenchymal stem cell (hMSC) clinical and tissue engineering applications, including type of polycationic transfection reagent, N/P ratio and dose of polycation/pDNA polyplexes, cell passage number, cell density and cell proliferation. The non-viral transfection efficiency was significantly influenced by N/P ratio, polyplex dose, cell density and cell passage number. hMSC culture conditions that inhibited cell division also decreased transfection efficiency, suggesting that strategies to promote hMSC proliferation may be useful to enhance transfection efficiency in future tissue engineering studies. Non-viral transfection treatments influenced hMSC phenotype, including the expression level of the hMSC marker CD105 and the ability of hMSCs to differentiate down the osteogenic and adipogenic lineages. The parameters found here to promote hMSC transfection efficiency, minimize toxicity and influence hMSC phenotype may be instructive in future non-viral transfection studies and tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号