首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant UDP-Glc:phenylpropanoid glucosyltransferases (UGTs) catalyze the transfer of Glc from UDP-Glc to numerous substrates and regulate the activity of compounds that play important roles in plant defense against pathogens. We previously characterized two tobacco salicylic acid- and pathogen-inducible UGTs (TOGTs) that act very efficiently on the hydroxycoumarin scopoletin and on hydroxycinnamic acids. To identify the physiological roles of these UGTs in plant defense, we generated TOGT-depleted tobacco plants by antisense expression. After inoculation with Tobacco mosaic virus (TMV), TOGT-inhibited plants exhibited a significant decrease in the glucoside form of scopoletin (scopolin) and a decrease in scopoletin UGT activity. Unexpectedly, free scopoletin levels also were reduced in TOGT antisense lines. Scopolin and scopoletin reduction in TOGT-depleted lines resulted in a strong decrease of the blue fluorescence in cells surrounding TMV lesions and was associated with weakened resistance to infection with TMV. Consistent with the proposed role of scopoletin as a reactive oxygen intermediate (ROI) scavenger, TMV also triggered a more sustained ROI accumulation in TOGT-downregulated lines. Our results demonstrate the involvement of TOGT in scopoletin glucosylation in planta and provide evidence of the crucial role of a UGT in plant defense responses. We propose that TOGT-mediated glucosylation is required for scopoletin accumulation in cells surrounding TMV lesions, where this compound could both exert a direct antiviral effect and participate in ROI buffering.  相似文献   

2.
Nicotiana tabacum Togt encodes a scopoletin glucosyltransferase (UDPglucose:scopoletin O -beta-D-glucosyltrans- ferase, EC 2.4.1.128) known to act in vitro on many different substrates including the 6-methoxy-7-hydroxy- coumarin scopoletin. This phenolic compound accumulates in vast amounts, essentially in its glucosylated form scopolin, in tobacco during the hypersensitive response (HR) to tobacco mosaic virus (TMV). To identify the physiological role of this pathogen-inducible UDP-Glc glucosyltransferase (UGT), we generated TOGT over-expressing transgenic plants. Although no endogenous scopoletin or scopolin could be detected before infection, the accumulation of both the aglycone and the glucoside was found to be 2-fold higher in transgenic plants after inoculation with TMV than in wild-type plants. Scopoletin UGT activity in plants over-expressing Togt was significantly higher during the HR than in control plants. This up-regulated activity was associated with a strong increase of the bright blue fluorescence surrounding the HR-necrotic lesions under UV light, which is known to correlate with scopoletin and scopolin abundance. Necrosis appeared sooner in transgenic plants and lesions developed faster, suggesting an accelerated HR. Unexpectedly, the viral content in each lesion was not significantly different in transgenic and in wild-type plants. These results are discussed in relation to the role of TOGT as the major UDP-Glc: scopoletin glucosyltransferase and to the importance of scopoletin accumulation during the HR.  相似文献   

3.
NADPH oxidation catalyzed by horseradish peroxidase is considerably increased by scopoletin and superoxide dismutase. These effects were used to develop a method for measuring H2O2 in a horseradish peroxidase, superoxide dismutase, and scopoletin system by measuring the NADPH oxidation rate. The optimal concentration of each reactant was determined. H2O2 could be detected and measured when it was present free in the medium or when it was produced by an H2O2-generating system, such as glucose-glucose oxidase or NADPH oxidase from thyroid plasma membranes. H2O2 was measured either by taking aliquots of the incubation medium or by placing NADPH directly in the medium and following the kinetics of NADPH oxidation. This latter approach required smaller amounts of biological material. In contrast to other methods, the H2O2 which is measured is regenerated. This method is 10 times more sensitive than the standard scopoletin method for H2O2 measurement and will detect a H2O2 production rate as low as 0.2 nmol per hour. The method is particularly suitable for biological systems in which small quantities of biological material are available.  相似文献   

4.
H(2)O(2) from the oxidative burst, cell death, and defense responses such as the production of phenylalanine ammonia lyase (PAL), salicylic acid (SA), and scopoletin were analyzed in cultured tobacco (Nicotiana tabacum) cells treated with three proteinaceous elicitors: two elicitins (alpha-megaspermin and beta-megaspermin) and one glycoprotein. These three proteins have been isolated from Phytophthora megasperma H20 and have been previously shown to be equally efficient in inducing a hypersensitive response (HR) upon infiltration into tobacco leaves. However, in cultured tobacco cells these elicitors exhibited strikingly different biological activities. beta-Megaspermin was the only elicitor that caused cell death and induced a strong, biphasic H(2)O(2) burst. Both elicitins stimulated PAL activity similarly and strongly, while the glycoprotein caused only a slight increase. Only elicitins induced SA accumulation and scopoletin consumption, and beta-megaspermin was more efficient. To assess the role of H(2)O(2) in HR cell death and defense response expression in elicitin-treated cells, a gain and loss of function strategy was used. Our results indicated that H(2)O(2) was neither necessary nor sufficient for HR cell death, PAL activation, or SA accumulation, and that extracellular H(2)O(2) was not a direct cause of intracellular scopoletin consumption.  相似文献   

5.
Transgenic tobacco plants over-expressing a salicylate- and pathogen-inducible glucosyltransferase (TOGT) acting on various phenylpropanoids show enhanced resistance against infection with potato virus Y (PVY). The transgenic plants are characterized by a several-fold increased glucosyltransferase activity in leaves as well as in roots. Under non-infectious conditions profiles of phenylpropanoids in leaves of transgenic lines were similar to that of controls. Feeding experiments with leaf-discs demonstrated a higher capacity for glucosylation of the coumarin scopoletin. After inoculation with PVY the transgenic lines showed similar formation of necrotic leaf lesions but significantly decreased levels of virus coat-protein when compared with control plants. Thus, our results imply that the activity of TOGT and the subsequent accumulation of glucosylated coumarins represent an important step in the cascade of events resulting in confinement of viral pathogens.  相似文献   

6.
We examined basal defense responses and cytomolecular aspects of riboflavin-induced resistance (IR) in sugar beet-Rhizoctonia solani pathsystem by investigating H(2)O(2) burst, phenolics accumulation and analyzing the expression of phenylalanine ammonia-lyase (PAL) and peroxidase (cprx1) genes. Riboflavin was capable of priming plant defense responses via timely induction of H(2)O(2) production and phenolics accumulation. A correlation was found between induction of resistance by riboflavin and upregulation of PAL and cprx1 which are involved in phenylpropanoid signaling and phenolics metabolism. Application of peroxidase and PAL inhibitors suppressed not only basal resistance, but also riboflavin-IR of sugar beet to the pathogen. Treatment of the leaves with each inhibitor alone or together with riboflavin reduced phenolics accumulation which was correlated with higher level of disease progress. Together, these results demonstrate the indispensability of rapid H(2)O(2) accumulation, phenylpropanoid pathway and phenolics metabolism in basal defense and riboflavin-IR of sugar beet against R. solani.  相似文献   

7.
Auh CK  Murphy TM 《Plant physiology》1995,107(4):1241-1247
An elicitor prepared from the autoclaved cell walls of Phytophthora sp. induced O2- generation and H2O2 accumulation by cultured cells of Rosa damascena Mill. cv Gloire de Guilan. N,N-Diethyldithiocarbamate, a superoxide dismutase inhibitior, blocked H2O2 accumulation and caused a dramatic accumulation of O2- by elicitor-treated rose cells. In the absence of N,N-diethyldithiocarbamate no detectable O2- was accumulated. Diphenyleneiodonium, quinacrine, pyridine, and imidazole, inhibitors of the mammalian neutrophil NADPH oxidase responsible for the generation of O2- during phagocytosis, inhibited O2- generation by elicitor-treated rose cells. Diphenyleneiodonium also inhibited NADH-dependent O2- production by plasma membranes isolated from rose cells. None of the four compounds inhibited the peroxidase activity in the cell-suspension medium. These results demonstrate that elicitor-stimulated accumulation of H2O2 comes only from superoxide dismutase-catalyzed dismutation of O2-. The data are inconsistent with the hypothesis that the synthesis of O2- is catalyzed by extracellular peroxidase and suggest that the enzyme responsible for the synthesis of O2- by elicitor-treated rose cells might be similar to the mammalian neutrophil NADPH oxidase.  相似文献   

8.
We have examined the respective roles played by guaiacol and scopoletin in NADPH oxidation catalyzed by the peroxidase/H2O2 system. It was shown that NADPH was not oxidized by either the horseradish or lactoperoxidase/H2O2 systems alone; oxidation occurred immediately after the addition of guaiacol or scopoletin. In both cases, the oxidation product was enzymatically active NADP+. Differences were observed in the NADPH oxidation mechanism depending on whether guaiacol or scopoletin was the mediator molecule. In guaiacol-mediated NADPH oxidation, the stoichiometry between H2O2 and oxidized NADPH was about 1; superoxide dismutase did not affect the oxidation rate. In scopoletin-mediated oxidation, the stoichiometry was much higher (1:14 in the present experiments); superoxide dismutase considerably increased the oxidation rate. It is concluded that catalysis of NADPH oxidation by the horse radish peroxidase/H2O2 system requires the presence of a mediator molecule. The NADPH oxidation mechanism depends on the intermediary oxidation state of this molecule.  相似文献   

9.
Active oxygen species have been postulated to perform multiple functions in plant defense, but their exact role in plant resistance to diseases is not fully understood. We have recently demonstrated H2O2-mediated disease resistance in transgenic potato (Solanum tuberosum) plants expressing a foreign gene encoding glucose oxidase. In this study we provide further evidence that the H2O2-mediated disease resistance in potato is effective against a broad range of plant pathogens. We have investigated mechanisms underlying the H2O2-mediated disease resistance in transgenic potato plants. The constitutively elevated levels of H2O2 induced the accumulation of total salicylic acid severalfold in the leaf tissue of transgenic plants, although no significant change was detected in the level of free salicylic acid. The mRNAs of two defense-related genes encoding the anionic peroxidase and acidic chitinase were also induced. In addition, an increased accumulation of several isoforms of extracellular peroxidase, including a newly induced one, was observed. This was accompanied by a significant increase in the lignin content of stem and root tissues of the transgenic plants. The results suggest that constitutively elevated sublethal levels of H2O2 are sufficient to activate an array of host defense mechanisms, and these defense mechanisms may be a major contributing factor to the H2O2-mediated disease resistance in transgenic plants.  相似文献   

10.
SUMMARY: Coumarins are derived via the phenylpropanoid pathway in plants. The 2H-1-benzopyran-2-one core structure of coumarins is formed via the ortho-hydroxylation of cinnamates, trans/cis isomerization of the side chain, and lactonization. Ortho-hydroxylation is a key step in coumarin biosynthesis as a branch point from lignin biosynthesis; however, ortho-hydroxylation of cinnamates is not yet fully understood. In this study, scopoletin biosynthesis was explored using Arabidopsis thaliana, which accumulates scopoletin and its beta-glucopyranoside scopolin in its roots. T-DNA insertion mutants of caffeoyl CoA O-methyltransferase 1 (CCoAOMT1) showed significant reduction in scopoletin and scopolin levels in the roots, and recombinant CCoAOMT1 exhibited 3'-O-methyltransferase activity on caffeoyl CoA to feruloyl CoA. These results suggest that feruloyl CoA is a key precursor in scopoletin biosynthesis. Ortho-hydroxylases of cinnamates were explored in the oxygenase families in A. thaliana, and one of the candidate genes in the Fe(II)- and 2-oxoglutarate-dependent dioxygenase (2OGD) family was designated as F6'H1. T-DNA insertion mutants of F6'H1 showed severe reductions in scopoletin and scopolin levels in the roots. The pattern of F6'H1 expression is consistent with the patterns of scopoletin and scopolin accumulation. The recombinant F6'H1 protein exhibited ortho-hydroxylase activity for feruloyl CoA (K(m) = 36.0 +/- 4.27 microM; k(cat) = 11.0 +/- 0.45 sec(-1)) to form 6'-hydroxyferuloyl CoA, but did not hydroxylate ferulic acid. These results indicate that Fe(II)- and 2-oxoglutarate-dependent dioxygenase is the pivotal enzyme in the ortho-hydroxylation of feruloyl CoA in scopoletin biosynthesis.  相似文献   

11.
In cell suspension cultures of Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) a rapid and concentration-dependent accumulation of H(2)O(2) is induced by excess concentrations of copper (up to 100 microM). This specific and early response towards copper stress was shown to be extracellular. Addition of 300 U of catalase per ml decreased the level of H(2)O(2). Superoxide dismutase (5 U/ml) induced an increase in H(2)O(2) production by 22.2%. This indicates that at least part of the H(2)O(2) is produced by dismutation of superoxide. Pretreatment of the cell cultures with the NAD(P)H oxidase inhibitors diphenylene iodonium (2 and 10 microM) and quinacrine (1 and 5 mM) prevented the generation of H(2)O(2) under copper stress for 90%. The influence of the pH on the H(2)O(2) production revealed the possible involvement of cell-wall-dependent peroxidases in the generation of reactive oxygen species after copper stress.  相似文献   

12.
The present study aims to investigate the role of extracellular glutamate and NMDA receptor stimulation in the neuronal death induced by a transient exposure to H2O2 of cultured neurons originating from mouse cerebral cortex. Most of the neuronal loss following a transient exposure to H2O2 of cortical neurons results from an apoptotic process involving a secondary stimulation of NMDA receptors, which occurs after H2O2 washout. Indeed, (a) the neurotoxic effect of H2O2 was strongly reduced by antagonists of NMDA receptors, (b) the neurotoxic effect of H2O2 was enhanced in the absence of Mg2+, (c) the protective effect of MK-801 progressively decayed when it was applied with increasing delay time after H2O2 exposure, and (d), finally, the extracellular concentration of glutamate was increased after H2O2 exposure. The major part of H2O2-induced neurotoxicity is mediated by the formation of hydroxyl radicals, which might be involved in (a) the delayed accumulation of extracellular glutamate and NMDA receptor activation and (b) the poly(ADP-ribose) polymerase activation and the related NAD content decrease. The combination of these two mechanisms could lead to both an increase in ATP consumption and a decrease of ATP synthesis. The resulting large decrease in ATP content might be finally responsible for the neuronal death.  相似文献   

13.
The present study tested the hypothesis that membrane-bound NAD(P)H oxidase in coronary arterial myocytes (CAMs) is capable of producing superoxide (O(2)(*-)) toward extracellular space to exert an autocrine- or paracrine-like action in these cells. Using a high-speed wavelength-switching fluorescent microscopic imaging technique, we simultaneously monitored the binding of dihydroethidium-oxidizing product to exogenous salmon testes DNA trapped outside CAMs and to nuclear DNA as indicators of extra- and intracellular O(2)(*-) production. It was found that a muscarinic agonist oxotremorine (OXO; 80 microM) increased O(2)(*-) levels more rapidly outside than inside CAMs. In the presence of superoxide dismutase (500 U/ml) plus catalase (400 U/ml) and NAD(P)H oxidase inhibitor diphenylene iodonium (50 microM) or apocynin (100 microM), these increases in extra- and intracellular O(2)(*-) levels were substantially abolished or attenuated. The O(2)(*-) increase outside CAMs was also confirmed by detecting oxidation of nitro blue tetrazolium and confocal microscopic localization of Matrigel-trapped OxyBURST H(2)HFF Green BSA staining around these cells. By electron spin resonance spectrometry, the extracellular accumulation of O(2)(*-) was demonstrated as a superoxide dismutase-sensitive component outside CAMs. Furthermore, RNA interference of NAD(P)H oxidase subunits Nox1 or p47 markedly blocked OXO-induced increases in both extra- and intracellular O(2)(*-) levels, whereas small inhibitory RNA of Nox4 only attenuated intracellular O(2)(*-) accumulation. These results suggest that Nox1 represents a major NAD(P)H oxidase isoform responsible for extracellular O(2)(*-) production. This rapid extracellular production of O(2)(*-) seems to be unique to OXO-induced M(1)-receptor activation, since ANG II-induced intra- and extracellular O(2)(*-) increases in parallel. It is concluded that the outward production of O(2)(*-) via NAD(P)H oxidase in CAMs may represent an important producing pattern for its autocrine or paracrine actions.  相似文献   

14.
Kauss H  Jeblick W 《Plant physiology》1995,108(3):1171-1178
Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to study the regulation of extracellular H2O2. After resuspension, the washed cells regulated the H2O2 concentration spontaneously to a constant level that was greatly increased when the cultures were pretreated for 1 d with salicylic acid (SA). The H2O2 level was further increased on addition of a fungal elicitor preparation, macromolecular chitosan, the sterol-binding polyene macrolide amphotericin B, the G protein-activating peptide mastoparan, or La3+. In all cases, this induced H2O2 burst was also greatly enhanced in cell suspensions pretreated with SA. Both the spontaneous and the induced H2O2 production were decreased by the protein kinase inhibitor K-252a. It is suggested that production of extracellular H2O2 occurs by an endogenously controlled plasma membrane enzyme complex that requires continuous phosphorylation for function and whose activity is increased by pretreatment of the cells with SA. This system can also receive various external stimuli, including those resulting from binding of fungal elicitor. SA can induce acquired resistance against pathogens. The conditioning of the parsley suspension culture by SA represents, therefore, a model for the long-term regulation of apoplastic H2O2 concentration by this signal substance, as suggested previously for the wound hormone methyl jasmonate.  相似文献   

15.
The use of the root crop Cassava (Manihot esculenta Crantz)is constrained by its rapid deterioration after harvest. Chemicaland spectroscopic examination revealed the accumulation of fourhydroxycoumarins (esculin, esculetin, scopolin and scopoletin),compounds derived from the phenylpropanoid pathway, during thetime course of post-harvest deterioration. Fluorescence-microscopyrevealed their localization in the apoplast of the parenchyma.Scopoletin and scopolin showed the most dramatic increases inconcentration, peaking by day 2 after harvesting. A smallersecondary peak of scopoletin tended to be more pronounced incultivars showing lower susceptibility to deterioration. Evidencefor the metabolism of scopoletin to an insoluble coloured productby means of a peroxidase is presented. This product may be thecause of the discolouration of the vascular tissue during storage.Copyright 2000 Annals of Botany Company Cassava, hydroxycoumarins, Manihot esculenta, peroxidases, post-harvest physiological deterioration, wound response  相似文献   

16.
To gain further insights into the function of extracellular Ca2+ in alleviating salt stress, Vicia faba guard cell protoplasts (GCPs) were patch-clamped in a whole-cell configuration. The results showed that 100 mM NaCl clearly induced Na+ influx across the plasma membrane in GCPs and promoted stomatal opening. Extracellular Ca2+ at 10 mM efficiently blocked Na+ influx and inhibited stomatal opening, which was partially abolished by La3+ (an inhibitor of plasma membrane Ca2+ channel) or catalase (CAT, a H?O? scavenger), respectively. These results suggest that the plasma membrane Ca2+ channels and H?O? possibly mediate extracellular Ca2+-blocked Na+ influx in GCPs. Furthermore, extracellular Ca2+ activated the plasma membrane Ca2+ channels under NaCl stress, which was partially abolished by CAT. These results, taken together, indicate that hydrogen peroxide (H?O?) likely regulates Na+ uptake by activating plasma membrane Ca2+ channels in GCPs. In accordance with this hypothesis, H?O? could mimic extracellular Ca2+ to activate Ca2+ channels and block Na+ influx in guard cells. A single-cell analysis of cytosolic free Ca2+ ([Ca2+](cyt)) using Fluo 3-AM revealed that extracellular Ca2+ induced the accumulation of cytosolic Ca2+ under NaCl stress, but had few effects on the accumulation of cytosolic Ca2+ under non-NaCl conditions. All of these results, together with our previous studies showing that extracellular Ca2+ induced the generation of H?O? in GCPs during NaCl stress, indicate that extracellular Ca2+ alleviates salt stress, likely by activating the H?O?-dependent plasma membrane Ca2+ channels, and the increase in cytosolic Ca2+ appears to block Na+ influx across the plasma membrane in Vicia guard cells, leading to stomatal closure and reduction of water loss.  相似文献   

17.
18.
The effects of extracellular K+ in relation to extracellular Ca2+ on acid production were studied. Studies were performed in vitro using isolated cells from rat stomachs, and acid production was indirectly determined by 14C-aminopyrine (AP) accumulation. In the absence of K+ in the incubation medium histamine-stimulated AP accumulation ratios were significantly decreased independently in the presence or absence of extracellular Ca2+. Under basal conditions, in the absence of extracellular Ca2+, increasing concentrations of extracellular K+ enhanced AP accumulation ratios to significantly higher than those found in the presence of Ca2+. In histamine-, cAMP-, and carbachol-stimulated parietal cells, high K+ concentrations increased AP accumulation significantly less in Ca(2+)-free than in Ca(2+)-containing media. High K+ also induced significantly both an increase in cytosolic free Ca2+ concentration and 45Ca2+ uptake. The present results confirmed the importance of K+ in gastric acid production and suggested a role for Ca2+ as a modulator of mechanisms of parietal cell stimulation.  相似文献   

19.
The present work set out to define the processes involved in the early O3-induced H2O2 accumulation in sunflower plants exposed to a single pulse of 150 ppb of O3 for 4 h. Hydrogen peroxide accumulation only occurred in the apoplast and this temporally coincided with the fumigation period. The inhibitor experiments suggested that both the plasma membrane-bound NAD(P)H oxidase complex and cell-wall NAD(P)H PODs contributed to H2O2 generation. To investigate the mechanisms responsible for O3-induced H2O2 accumulation further, both production and scavenging of H2O2 were investigated in the extracellular matrix after subcellular fractionation. The results indicated that H2O2 accumulation is a complex and highly regulated event requiring the time-dependent stimulation and down-regulation of differently located enzymes, some of which are involved in H2O2 generation and degradation, not only during the fumigation period but also in the subsequent recovery period in non-polluted air. Owing to the possible interplay between H2O2 and ethylene, the time-course of ethylene emission was analysed too. Ethylene was rapidly emitted following O3 exposure, but it declined to control values as early as after 4 h of exposure. The early contemporaneous detection of increased ethylene and H2O2 levels after 30 min of exposure does not allow a clear temporal relationship between these two signalling molecules to be established.  相似文献   

20.
在高温锻炼(37℃,2h)过程中,豌豆(Pisum sativum L.)叶片过氧化氢(H_2O_2)和游离态水杨酸(SA)含量与质膜ATP酶(H~ -ATPase)活性都有一个高峰,H_2O_2的迸发早于游离态SA的积累,而质膜H~ -ATPase活性高峰的出现则迟于SA高峰;活性氧清除剂、抗氧化剂、质膜NADPH氧化酶抑制剂和H_2O_2的淬灭剂预处理均可有效地阻止高温下H_2O_2和SA的积累以及质膜H~ -ATPase活性的增加。根据以上结果推测,H_2O_2、质膜H~ -ATPase和SA均参与耐热性诱导相关的信号传递,前者作用于SA的上游,而后者在SA下游起作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号