首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Divalent cation affinity sites in Paramecium aurelia   总被引:5,自引:5,他引:0       下载免费PDF全文
Sites with high calcium affinity in Paramecium aurelia were identified by high calcium (5 mM) fixation and electron microscope methods. Electron-opaque deposits were observed on the cytoplasmic side of surface membranes, particularly at the basal regions of cilia and trichocyst-pellicle fusion sites. Deposits were also observed on some smooth cytomembranes, within the axoneme of cilia, and on basal bodies. The divalent cations, Mg2+, Mn2+, Sr2+, Ni2+, Ba2+, and Zn2+, could be substituted for Ca2+ in the procedure. Deposits were larger with 5 mM Sr2+. Ba2+, and Mn2+ at ciliary transverse plates and the terminal plate of basal bodies. Microprobe analysis showed that Ca and C1 were concentrated within deposits. In some analyses, S and P were detected in deposits. Also, microprobe analysis of 5 mM Mn2+-fixed P. aurelia showed that those deposits were enriched in Mn and C1 and sometimes enriched in P. Deposits were seen only when the ciliates were actively swimming at the time of fixation. Locomotory mutants having defective membrane Ca-gating mechanisms and ciliates fixed while exhibiting ciliary reversal showed no obvious differences in deposition pattern and intensity. Possible correlations between electron-opaque deposits and the locations of intramembranous particles seen by freeze-fracture studied, as well as sites where fibrillar material associate with membranes are considered. The possibility that the action sites of calcium and other divalent cations were identified is discussed.  相似文献   

2.
The passive Ca2+ permeability of fragmented sarcoplasmic reticulum membranes is 10(4) to 10(61 times greater than that of liposomes prepared from natural or synthetic phospholipids. The contribution of membrane proteins to the Ca2+ permeability was studied by incorporating the purified [Ca2+ + Mg2+]-activated ATPase into bilayer membranes prepared from different phospholipids. The incorporation of the Ca2+ transport ATPase into the lipid phase increased its Ca2+ permeability to levels approaching that of sarcoplasmic reticulum membranes. The permeability change may arise from a reordering of the structure of the lipid phase in the environment of the protein or could represent a specific property of the protein itself. The calcium-binding protein of sarcoplasmic reticulum did not produce a similar effect. The increased rate of Ca2+ release from reconstituted ATPase vesicles is not a carrier-mediated process as indicated by the linear dependence of the Ca2+ efflux upon the gradient of Ca2+ concentration and by the absence of competition and countertransport between Ca2+ and other divalent metal ions. The increased Ca2+ permeability upon incorporation of the transport ATPase into the lipid phase is accompanied by similar increase in the permeability of the vesicles for sucrose, Na+, choline, and SO42- indicating that the transport ATPase does not act as a specific Ca2+ channel. Native sarcoplasmic reticulum membranes are asymmetric structures and the 75-A particles seen by freeze-etch electron microscopy are located primarily in the outer fracture face. In reconstituted ATPase vesicles the distribution of the particles between the two fracture faces is even, indicating that complete structural reconstitution was not achieved. The Ca2+ transport activity of reconstituted ATPase vesicles is also much less than that of fragmented sarcoplasmic reticulum. The density of the 40-A surface particles visible after negative staining of native or reconstituted vesicles is greater than that of the intramembranous particles and the relationship between these two structures remains to be established.  相似文献   

3.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

4.
The interaction of metal ions with the sea urchin extraembryonic coat protein hyalin was investigated. Hyalin, immobilized on nitrocellulose membrane, bound Ca2+ and this interaction was disrupted by ruthenium red and selective metal ions. The divalent cations Cd2+ and Mn2+, when present at a concentration of 30 microM, displaced hyalin-bound Ca2+. In competition assays, 1 mM Cd2+ or 3 mM Mn2+ were effective competitors with Ca2+ for binding to hyalin. Cobalt, at a concentration of 30 microM, was unable to displace protein-bound Ca2+, but was effective in competition assays at a concentration of at least 10 mM. Magnesium and the monovalent cation Cs+ were unable to disrupt Ca2(+)-hyalin interaction. Interestingly, Cd2+, Mn2+, and Co2+ mimicked the biological effects of Ca2+ on the hyalin self-association reaction. These results clearly demonstrate that the Ca2(+)-binding sites on hyalin can selectively accommodate other divalent cations in a biologically active configuration.  相似文献   

5.
The location of hexokinase at the surface of brain mitochondria was investigated by electron microscopy using immuno-gold labelling techniques. The enzyme was located where the two mitochondrial limiting membranes were opposed and contact sites were possible. Disruption of the outer membrane by digitonin did not remove bound hexokinase and creatine kinase from brain mitochondria, although the activity of outer membrane markers and adenylate kinase decreased, suggesting a preferential location of both enzymes in the contact sites. In agreement with that, a membrane fraction was isolated from osmotically lysed rat brain mitochondria in which hexokinase and creatine kinase were concentrated. The density of this kinase-rich fraction was specifically increased by immuno-gold labelling of hexokinase, allowing a further purification by density gradient centrifugation. The fraction was composed of inner and outer limiting membrane components as shown by the specific marker enzymes, succinate dehydrogenase and NADH-cytochrome-c-oxidase (rotenone insensitive). As reported earlier for the enriched contact site fraction of liver mitochondria the fraction from brain mitochondria contained a high activity of glutathione transferase and a low cholesterol concentration. Moreover, the contacts showed a higher Ca2+ binding capacity in comparison to outer and inner membrane fractions. This finding may have regulatory implications because glucose phosphorylation via hexokinase activated the active Ca2+ uptake system and inhibited the passive efflux, resulting in an increase of intramitochondrial Ca2+.  相似文献   

6.
The addition of nanomolar concentrations of free Fe2+, Mn2+, or Co2+ to rat liver plasma membranes resulted in an activation of ATP hydrolysis by these membranes which was not additive with the Ca2+-stimulated ATPase activity coupled to the Ca2+ pump. Detailed analysis showed that, if fact, (i) as for the stimulation of (Ca2+-Mg2+)-ATPase by Ca2+, activation of ATP hydrolysis by Fe2+, Mn3+, or Co2+ followed a cooperative mechanism involving two ions; (ii) two interacting sites for ATP were involved in the activation of both Fe2+- and Ca2+-stimulated ATPase activities; (iii) micromolar concentrations of magnesium caused the same dramatic inhibition of both activities; and (iv) the subcellular distribution of Fe2+-activated ATP hydrolysis activity corresponded to that of plasma membrane markers. This suggests that the (Ca2+-Mg2+)-ATPase might be stimulated not only by Ca2+, but also by Fe2+, Mn2+, or Co2+. However, interaction of (Ca2+-Mg2+)-ATPase with Fe2+, Mn2+, or Co2+ inhibited the Ca2+ pump activity. Furthermore, neither the formation of the phosphorylated intermediate of (Ca2+-Mg2+)-ATPase, nor ATP-dependent (59Fe) uptake could be detected in the presence of Fe2+ concentrations which stimulated ATP hydrolysis. We conclude that: (i) under the influence of certain metal ions, the Ca2+ pump in the liver plasma membrane may be switched to an uncoupled state which displays ATP hydrolysis activity, but does not insure ion transport; (ii) therefore the Ca2+ pump in liver plasma membranes specifically insures Ca2+ transport.  相似文献   

7.
Manganese stimulates calcium flux through the mitochondrial uniporter   总被引:3,自引:0,他引:3  
Mn2+ alters the balance between the simultaneous uptake and release of Ca2+ across the mitochondrial inner membrane toward a lower external level. Addition of as little as 0.5 microM Mn2+ to energised mitochondria from rat liver, rat heart or guinea-pig brain changed the level at which they buffered Ca2+ in the medium. That extramitochondrial Mn2+ was responsible was suggested by a partial decay in the shift in Ca2+ steady state at a rate similar to the rate at which Mn2+ was accumulated by the mitochondria. The alteration of transmembrane Ca2+ distribution by Mn2+ required that both Mg2+ and Pi be present, and was almost maximal at Mg2+ and Pi levels in the physiological range. Substitution of spermine or Ni2+ for Mg2+, or acetate for Pi, abolished the effect. In contrast to Sr2+, Mn2+ did not inhibit either EGTA- or Ruthenium red-induced release of Ca2+ from the mitochondria. However, when flux through the uniporter was rate-limiting, Mn2+ accelerated Ca2+ uptake. The stimulation showed hyperbolic kinetics, with an element of competition discernible in the Mn2+-Mg2+ interaction. Thus, extramitochondrial Mn2+ at levels occurring in vivo can alter the mitochondrial 'set-point' by stimulating Ca2+ influx through the uniporter.  相似文献   

8.
Ions of bivalent metals are shown to arrange in the Sr2+ greater than Ca2+ greater than Ba2+ greater than Mn2+ series as to their ability to induce ion flow vibration in the rat liver mitochondria. Application of Sr2+ results in the most stable prolonged vibrations of ion flows in mitochondria. Ca2+, Ba2+ and Mn2+ induce slightly pronounced and intensively damped vibrations. The studied Mg2+, Co2+, Ni2+, Pb2+ Fe2+ cations have effect on valinomycin-induced K+ transport in mitochondria and do not induce vibrations. It is established that the ability of bivalent cations to induce vibrations is associated with the possibility of their transfer through the mitochondrion membrane and accumulation in the matrix. Inhibitors of the electrogenic Ca2+ transport in mitochondria produce the similar effect on vibrations induced by Sr2+, Ca2+, Ba2+ and Mn2+.  相似文献   

9.
The subcellular distribution of neutral sphingomyelinase activity has been determined in rat liver. Neutral sphingomyelinase is present in the plasma membrane. This enzyme requires either Mg2+ or Mn2+ for full activity; these cations cannot be replaced by Co2+ or Ca2+. The plasma membrane sphingomyelinase is strongly inhibited by Hg2+. A small amount of neutral spingomyelinase activity appears to be present in microsomes. No neutral sphingomyelinase activity is present in liver mitochondria or bytosol. Lysosomal sphingomyelinase is fully active at pH 4.4--4.8 without added divalent cations. However, between pH 5.0 and 7.5 lysosomal sphingomyelinase activity is stimulated by Mg2+, Mn2+, Co2+, and Ca2+. Below pH 4.8, Mg2+ inhibits the reaction. In contrast to the results obtained with the neutral sphingomyelinase activity of plasma membranes and microsomes, lysosomal sphingomyelinase is unaffected by sulfhydryl inhibitors.  相似文献   

10.
Adrenal cortex mitochondria prepared by a standard method do not exhibit malic enzyme activity. Addition of physiological concentrations of Ca2+ and Mg2+ enables these mitochondria to reduce added NADP+ by malate to form free NADPH. Half-maximum activation of the mitochondrial malic enzyme requires 0.3 mM Ca2+ and 1 mM Mg2+. Solubilized mitochondrial malic enzymes is independent of Ca2+ and has a K M of 0.2 mM for Mg2+. The Ca2+ effect is dependent on an initial period of active Ca2+ uptake which also causes other changes in respiratory properties similar to those observed with mitochondria from other tissues. After Ca2+ accumulation has taken place, free Ca2+, but not additional accumulation, is still required for malic enzyme activity. The requirement for Mg2+ can be met by Mn2+ (1 mM). This concentration of Mn2+ alone yielded only a slight activation of mitochondrial malic enzyme while higher concentrations of Mn2+ alone gave good activation of the mitochondrial malic enzy.e The NADPH generated by the Ca2+-Mg2+ activated malic enzyme effectively supports the 11beta-hydroxylation of deoxycorticosterone, whereas in the presence of malate, or malate plus Mg2+ but absence of Ca2+, the energy linked transhydrogenase supplies all the required NADPH. The activated malic enzyme appears to be more efficient than transhydrogenase in generating NADPH to support 11beta-hydroxylation. Cyanide and azide have been found to inhibit solubilized mitochondrial malic enzyme.  相似文献   

11.
Vesicular sarcolemmal preparations isolated from rat hearts were characterized by high total ATPase (4.32 +/- 0.57 mumol/min per mg), adenylate cyclase (121 +/- 11 pmol/min per mg) and creatine kinase (1.73 +/- 0.35 mumol/min per mg) activities as well as Na-Ca exchange specific to sodium. ATPase activity was inhibited with digitoxigenin by 50-70% and was not changed by ouabain, ionophore A23187 or oligomycin. Sarcolemmal vesicles bound [3H]digitoxigenin and [3H]ouabain in isotonic medium in the presence of Pi and Mg2+. The number of binding sites for hydrophobic digitoxigenin (N = 237 pmol/mg) was several-times higher than that for hydrophilic ouabain (N = 32.7 pmol/mg). These data show that sarcolemmal preparations were not significantly contaminated by mitochondria and sarcoplasmic reticulum and consisted mostly of inside-out vesicles. Incubation of these vesicles with 45Ca2+ (0.5-10 mM) led to penetration of the latter into the vesicles with the following binding characteristics: number of binding sites (N = 20.5 +/- 4.6 nmol/mg, Kd approximately equal to 2.0 mM). Ca2+ binding to the inner surface of vesicles was proved by the following facts: (1) Ca2+ ionophore A23187 increased slightly total intravesicular Ca2+ content but markedly accelerated Ca2+ efflux along its concentration gradient; (2) gramicidin and osmotic shock showed a similar accelerating effect. Ca2+ efflux from the vesicles along its concentration gradient ([Ca2+]i/[Ca2+]e = 2.0 mM/0.1 microM) was inhibited by Mn2+, Co2+, and verapamil when they acted inside the vesicles. The rate of Ca2+ efflux was hyperbolically dependent on intravesicular Ca2+ concentration (Km approximately equal to 2.9 mM). These data reveal that Ca2+ efflux from sarcolemmal vesicles is controlled by Ca2+ binding to the sarcolemmal membrane. Ca2+ efflux from the vesicles was stimulated 1.7--times after incubation of vesicles with 0.2 mM MgATP or MgADP and 15-times after treatment with 0.2 mM adenylyl beta, gamma-imidodiphosphate. Enhancement in the rate of Ca2+ efflux correlated with the increase in the intravesicular Ca2+ content. ATP-stimulated Ca2+ efflux was suppressed by verapamil and was nonmonotonically dependent upon the transmembrane potential created by the K+ concentration gradient in the presence of valinomycin, Ca2+ efflux being slower at extreme values of membrane potential (+/- 80 mV).  相似文献   

12.
Carboxyatractylate (CAT) and atractylate inhibit the mitochondrial adenine nucleotide translocator (ANT) and stimulate the opening of permeability transition pore (PTP). Following pretreatment of mouse liver mitochondria with 5 microM CAT and 75 microM Ca2+, the activity of PTP increased, but addition of 2 mM ADP inhibited the swelling of mitochondria. Extramitochondrial Ca2+ concentration measured with Calcium-Green 5N evidenced that 2 mM ADP did not remarkably decrease the free Ca2+ but the release of Ca2+ from loaded mitochondria was stopped effectively after addition of 2 mM ADP. CAT caused a remarkable decrease of the maximum amount of calcium ions, which can be accumulated by mitochondria. Addition of 2 mM ADP after 5 microM CAT did not change the respiration, but increased the mitochondrial capacity for Ca2+ at more than five times. Bongkrekic acid (BA) had a biphasic effect on PT. In the first minutes 5 microM BA increased the stability of mitochondrial membrane followed by a pronounced opening of PTP too. BA abolished the action about of 1 mM ADP, but was not able to induce swelling of mitochondria in the presence of 2 mM ADP. We conclude that the outer side of inner mitochondrial membrane has a low affinity sensor for ADP, modifying the activity of PTP. The pathophysiological importance of this process could be an endogenous prevention of PT at conditions of energetic depression.  相似文献   

13.
Heterogeneous populations of microsomes obtained from normal and dystrophic chicken pectoralis muscle were separated into two subfractions by an iterative loading technique. The buoyant density of the sarcoplasmic reticulum (SR) microsomes was increased after loading them with calcium oxalate. Several incubations in the transport medium were necessary to load all of the SR. The fraction that did not form a pellet contained microsomes which displayed freeze-fracture faces that had a low density of particles. A stereological analysis was used on membrane fracture faces of intact muscle to generate reference particle density distributions, which were compared with the distributions measured on the microsomal fracture faces. The concave microsomal fracture faces of purified microsomes which did not load calcium oxalate had particle distributions nearly identical to the distributions of intact P-face T tubules. The morphological data suggest that this subfraction is microsomal T system. Biochemical measurements show negligible amounts of specific Na+, K+-ATPase activity, suggesting that there was little contamination from the surface membrane in this subfraction. Furthermore, an active Ca2+-ATPase is demonstrated in both normal and dystrophic T-tubular membranes.  相似文献   

14.
Contrary to the generally accepted rule that there are only two fracture faces associated with a membrane, the analysis of double replicas at rat heart muscle mitochondria revealed three pairs of complementary replicas with one face in each pair exposing the outer surface membrane. The replicas must then expose the surfaces of the outer surface membrane and in two of the pairs the fracture had passed between the two surface membranes in two alternative ways, either clearly between the two membranes or the fracture deviated into and through the inner surface membrane at regularly spaced intervals. This deviation reveals that at these sites the connection between the two surface membranes is particularly firm. The analysis led to the conclusion that these sites correspond to those where the stalk-like connections extending from the cristae are connected to the inner surface membrane. This way proteinaceous pathways connect the cristae to the surface of the mitochondria.  相似文献   

15.
Changes in membrane-bound calcium (Ca2+(b)) content in the brain cortex membrane structures were studied on subcellular fractions (synaptosomes, microsomes, mitochondria) during in vitro anoxia. The changes in Ca2+ content in hydrophobic domains of intracellular membranes were assessed, using chlorotetracycline fluorescent probe. It has been found that membranes of different neuronal compartments are not equally vulnerable to anoxia. A decrease in Ca2+9(b) content in response to anoxia occurs in synaptosomes and microsomes much sooner than in mitochondria. Therefore, Ca2+ release from intracellular membrane compartments, preceding the massive inward flow of extracellular Ca2+, seems to be one of those mechanisms initiating a complex range of intracellular reactions to disturbed oxygen supply in brain cortex neurons.  相似文献   

16.
The effects of Ca2+ on ethanolaminephosphotransferase [EC 2.7.8.1] and cholinephosphotransferase [EC 2.7.8.2] activities in rabbit platelet membranes were studied using endogenous diglyceride and CDP-[3H]ethanolamine or CDP-[14C]choline as substrates. Both transferases required Mn2+, Co2+, or Mg2+ as a metal cofactor and the optimal concentrations of the metals for both activities were about 5, 10, and 5 mM, respectively. When 5 mM Mg2+ was used as a cofactor, both transferase activities were inhibited by a low concentration of Ca2+ (half maximal inhibition at approx. 15 microM). In the presence of 5 mM Mn2+, however, approx. 5 mM Ca2+ was required to produce half maximal inhibition. The Ca2+-induced inhibition was reversible and the rate of the inhibition was not affected either by the concentrations of the CDP-compound or by exogenously added diacylglycerol. The relationship between Ca2+ and both Mg2+ and Mn2+ on the transferase activities was competitive. 45Ca2+ binding (and/or uptake) to the platelet membranes was inhibited by Mn2+, Mg2+, and Co2+, in a concentration-dependent manner. However, the inhibitory effects of the three metal ions on the total Ca2+ binding (and/or uptake) did not correlate with the activation of both transferase activities by the three metal ions in the presence of Ca2+. These results suggest that both transferase activities are regulated by low concentrations of Ca2+ in the presence of optimal concentrations of Mg2+, and that the inhibition is mediated directly by Ca2+, which interacts with a specific metal cofactor binding site(s) of the transferases.  相似文献   

17.
The Rieske iron-sulfur protein of the cytochrome bc1 complex is synthesized in the cytosol as a precursor with an additional 30 amino acids at the amino terminus. After import into the mitochondrial matrix, the precursor is processed to the mature form by two distinct proteolytic cleavages. Addition of 2.5 mM EDTA and 0.5 mM o-phenanthroline to the incubation mixture during import of the iron-sulfur protein precursor in vitro resulted in the selective inhibition of the second processing step with the concomitant accumulation of the intermediate form. The intermediate form was chased to the mature form in the presence of antimycin and oligomycin (to block the formation of a membrane potential) provided that 0.5 nM ATP and a metal ion such as Ca2+, Mn2+, or Mg2+ were added. Ca2+ ion was the most effective and at a concentration of 2.5 mM resulted in the complete cleavage of the intermediate to the mature form. Addition of Zn2+, Co2+, Mo2+, and Fe2+ was not effective in restoring the second cleavage. The pH optimum for the processing of the intermediate form of the iron-sulfur protein to the mature form was between 6.8-8.0. Processing of the intermediate form of the iron-sulfur protein to the mature form was observed at temperatures ranging from 12 to 27 degrees C in a temperature-dependent manner. The time course during the chase indicated that the second processing step was completed within 2 min after addition of Ca2+ ions. Attempts to isolate the second processing enzyme by sonication of mitochondria or by solubilization with detergents such as digitonin, Triton X-100, dodecyl-maltoside, or octyl-glucoside were unsuccessful as only the first cleavage was observed. Hence, the second processing enzyme may be present in the inner membrane or matrix in a conformation disrupted by detergents or alternatively the enzyme may be very labile.  相似文献   

18.
The energy-dependent, respiration-supported uptake and the uncoupler- or Na+-induced release of Ca2+ and Mn2+ by mitochondria from rat liver, heart and brain were investigated, using as indicators radioisotopes (45Ca and 54Mn), proton ejection, oxygen consumption, nicotinamide nucleotide oxidation-reduction and, in the case of Ca2+, the metallochromic dye Arsenazo III. Ca2+ uptake in the presence of Pi was rapid in mitochondria from liver and brain, and less rapid in those from heart. Mn2+ uptake was much slower than that of Ca2+ in liver and heart, but only slightly slower in brain. When added together, Ca2+ accelerated the uptake of Mn2+, and Mn2+ retarded the uptake of Ca2+, by mitochondria from all three tissues. When Mn2+ was present during Ca2+ uptake, its own uptake remained accelerated even after Ca2+ uptake was terminated. Mg2+, which was not taken up, inhibited Ca2+ uptake by mitochondria from all three tissues, and, when present during Ca2+ uptake, accelerated the subsequent uptake of Mn2+. The uncoupler CCCP induced a release of both Ca2+ and Mn2+ from all three sources of mitochondria; yet, release of Mn2+ took place only in the absence of Pi. The release followed the same pattern as the uptake, i.e., Ca2+ accelerated the release of Mn2+ and Mn2+ retarded the release of Ca2+. Na+ induced a release of both Ca2+ and Mn2+ from heart and brain but not from liver mitochondria; again, Mn2+ release occurred only in the absence of Pi. The Na+-induced release of Ca2+ was inhibited by Mn2+, but the Na+-induced release of Mn2+ was not accelerated by Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Polarization of the inner membrane is the key factor in maintenance of the physiologically significant cations accumulation, in particular Ca2+, in the mitochondria. It has been well established that mitochondria accumulate calcium through the uniporter, driven by the mitochondrial membrane potential. Nevertheless, it has been shown that depolarized mitochondria also accumulate Ca2+. The aim of this paper is to investigate free Ca level in depolarized myometrium mitochondria. As we have shown previously Ca2+ addition to the incubation medium, that did not contain K-phosphate, ATP and Mg2+, led to inner mitochondrial membrane depolarization. Nevertheless Ca2+ addition to such medium led to the concentration-dependent accumulation of this cation in the matrix. RuR or Mg addition to the incubation medium led to the higher elevation of mitochondrial Ca2+ level in depolarized mitochondria. Mitochondrial Ca2+ level was not affected by 5 microM cyclosporine A. It was suggested that H+/Ca2+ exchanger could provide calcium accumulation in depolarized mitochondria. The elevation of mitochondrial Ca2+ level after addition of Mg2+ and RuR may be due to inhibition of Ca2+- efflux through Ca2+ uniporter.  相似文献   

20.
The mitochondrial role opening (MPT) induced by Ca2+ has been studied in isolated rat heart mitochondria. MPT was characterized as cyclosporine A-inhibited swelling accompanied by the loss of membrane potential (deltapsim) and Ca2+ efflux after the Ca2+ -loading which was followed spectrophotometrically after the Ca2+ -arsenaso-III complex formation. It has been shown that in suspension of isolated mitochondria MPT was activated by low (with maximum at about 20 microM Ca2+) and high concentrations of Ca2+ (the concentration curve shows a saturation at about 1.0-1.5 mM). In all the cases an access of Ca2+ ions to the matrix space of the mitochondria was necessary for MPT induction. MPT activated by low concentrations of Ca2+ was accompanied by slow decrease of deltapsim and slow release of Ca2+, enhanced by ruthenium red (RR), and was independent of the substrate used (glutamate or succinate). It had not been observed if the respiratory chain was inhibited, even if the Ca2+ access to the inner mitochondrial membrane was provided by Ca2+ -ionophore A23187. At high Ca2+ concentrations rapid Ca2+ -uptake and release via Ca2+ -uniporter (inhibited by ruthenium red) followed by extensive swelling (pore formation) have been observed. It had been supposed that rapid MPT at high concentrations of Ca2+ was the result of Ca2+ entrance to the mitochondrial matrix and depolarisation of the mitochondrial membrane. The data obtained show two different mechanisms of Ca2+ -induced MPT. The one is sensitive to the redox-state of the electron transport chain and is abolished if the respiration is inhibited. The other is independent of mitochondrial respiration and needs only Ca2+ access to the inner mitochondrial membrane and Ca2+ binding to some specific sites leading to MPT opening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号