首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Although several genomewide scans have identified quantitative-trait loci influencing several obesity-related traits in humans, genes influencing normal variation in obesity phenotypes have not yet been identified. We therefore performed a genome scan of body mass index (BMI) on Mexican Americans, a population prone to obesity and diabetes, using a variance-components linkage analysis to identify loci that influence BMI. We used phenotypic data from 430 individuals (26% diabetics, 59% females, mean age +/- SD = 43 +/- 17 years, mean BMI +/- SD = 30.0 +/- 6.7, mean leptin (ng/ml) +/- SD = 22.1 +/- 17.1) distributed across 27 low-income Mexican American pedigrees who participated in the San Antonio Family Diabetes Study (SAFDS) for whom a 10-15-cM map is available. In this genomewide search, after accounting for the covariate effects of age, sex, diabetes, and leptin, we identified a genetic region exhibiting the most highly significant evidence for linkage (LOD 4.5) with BMI on chromosome 4p (4p15.1) at 42 cM, near marker D4S2912. This linkage result has been confirmed in an independent linkage study of severe obesity in Utah pedigrees. Two strong positional candidates, the human peroxisome proliferator-activated receptor gamma coactivator 1 (PPARGC1) and cholecystokinin A receptor (CCKAR) with major roles in the development of obesity, are located in this region. In conclusion, we identified a major genetic locus influencing BMI on chromosome 4p in Mexican Americans.  相似文献   

2.
Systemic lupus erythematosus (SLE) is a chronic, complex, and systemic human autoimmune disease, with both an environmental component and a heritable predisposition. Clinical studies, reinforced by epidemiology and genetics, show impressive variation in disease severity, expression, prevalence, and incidence by ethnicity and sex. To identify the novel SLE susceptibility loci, we performed a genomewide scan with 318 markers on 37 multiplex Hispanic families, using a nonparametric penetrance-independent affected-only allele-sharing method. Three chromosomal regions (12q24, 16p13, and 16q12-21) exceeded our predetermined threshold (Zlr>2.32; nominal P<.01) for further evaluation. Suspected linkages at 12q24, 16p13, and 16q12-21 were tested in an independent data set consisting of 92 European American (EA-1) and 55 African American (AA) families. The linkage at 12q24 was replicated in EA-1 (Zlr=3.06; P=.001) but not in AA (Zlr=0.37; P=.35). Although neither the 16p13 nor the 16q12-21 was confirmed in EA-1 or AA, the suggestive linkage (Zlr=3.06; P=.001) at 16q12-21 is sufficient to confirm the significant linkage, reported elsewhere, at this location. The evidence for linkage at 12q24 in the 129 combined (Hispanic and EA-1) families exceeded the threshold for genomewide significance (Zlr=4.39; P=5.7x10-6; nonparametric LOD=4.19). Parametric linkage analyses suggested a low-penetrance, dominant model (LOD=3.72). To confirm the linkage effect at 12q24, we performed linkage analysis in another set of 82 independent European American families (EA-2). The evidence for linkage was confirmed (Zlr=2.11; P=.017). Therefore, our results have detected, established, and confirmed the existence of a novel SLE susceptibility locus at 12q24 (designated "SLEB4") that may cause lupus, especially in Hispanic and European American families.  相似文献   

3.
The development of refractive error is mediated by both environmental and genetic factors. We performed regression-based quantitative trait locus (QTL) linkage analysis on Ashkenazi Jewish families to identify regions in the genome responsible for ocular refraction. We measured refractive error on individuals in 49 multi-generational American families of Ashkenazi Jewish descent. The average family size was 11.1 individuals and was composed of 2.7 generations. Recruitment criteria specified that each family contain at least two myopic members. The mean spherical equivalent refractive error in the sample was −3.46D (SD=3.29) and 87% of individuals were myopic. Microsatellite genotyping with 387 markers was performed on 411 individuals. We performed multipoint regression-based linkage analysis for ocular refraction and a log transformation of the trait using the statistical package Merlin-Regress. Empirical genomewide significance levels were estimated through gene-dropping simulations by generating random genotypes at each of the 387 markers in 200 replicates of our pedigrees. Maximum LOD scores of 9.5 for ocular refraction and 8.7 for log-transformed refraction (LTR) were observed at 49.1 cM on chromosome 1p36 between markers D1S552 and D1S1622. The empirical genomewide significance levels were P=0.065 for ocular refraction and P<0.005 for LTR, providing strong evidence for linkage of refraction to this locus. The inter-marker region containing the peak spans 11 Mb and contains approximately 189 genes. Conclusion: We found genomewide significant evidence for linkage of refractive error to a novel QTL on chromosome 1p36 in an Ashkenazi Jewish population.  相似文献   

4.
Segregation and linkage analyses were performed for adult height in a population of 200 Dutch families, each of which was ascertained through a proband with asthma. The best-fit model from the segregation analysis was a major recessive gene with a significant residual polygenic background. Models without a polygenic component were rejected. A genomewide scan was performed, and it confirmed previous linkage results for chromosomes 6q25 (LOD = 3.06, D6S2436), 9p1 (LOD = 2.09, D9S301), and 12q1 (LOD = 1.86, D12S375). Our results provide evidence that a combination of segregation and linkage approaches is valuable in understanding genetic determination of common complex traits.  相似文献   

5.
Avascular necrosis of the femoral head (ANFH) is a debilitating disease that commonly leads to destruction of the hip joint in adults. The etiology of ANFH is unknown, but previous studies have indicated that heritable thrombophilia (increased tendency to form thrombi) and hypofibrinolysis (reduced ability to lyse thrombi), alcohol intake, and steroid use are risk factors for ANFH. We recently identified two families with ANFH showing autosomal dominant inheritance. By applying linkage analysis to a four-generation pedigree, we excluded linkage between the family and three genes related to thrombophilia and hypofibrinolysis: protein C, protein S, and plasminogen activator inhibitor. Furthermore, by a genomewide scan, a significant two-point LOD score of 3.45 (recombination fraction [theta] = 0) was obtained between the family with ANFH and marker D12S85 on chromosome 12. High-resolution mapping was conducted in a second family with ANFH and replicated the linkage to D12S368 (pedigree I: LOD score 2.47, theta = 0.05; pedigree II: LOD score 2.81, theta = 0.10). When an age-dependent-penetrance model was applied, the combined multipoint LOD score was 6.43 between D12S1663 and D12S85. Thus, we mapped the candidate gene for autosomal dominant ANFH to a 15-cM region between D12S1663 and D12S1632 on chromosome 12q13.  相似文献   

6.
Over 30 genomic regions show linkage to asthma traits. Six asthma genes have been cloned, but the putative loci in many linked regions have not been identified. To search for asthma susceptibility loci, we performed genomewide univariate linkage analyses of seven asthma traits, using 202 Australian families ascertained through a twin proband. House-dust mite sensitivity (Dpter) exceeded the empirical threshold for significant linkage at 102 cM on chromosome 20q13, near marker D20S173 (empirical pointwise P = .00001 and genomewide P = .005, both uncorrected for multiple-trait testing). Atopy, bronchial hyperresponsiveness (BHR), and forced expiratory volume in 1 s (FEV1) were also linked to this region. In addition, 16 regions were linked to at least one trait at the suggestive level, including 12q24, which has consistently shown linkage to asthma traits in other studies. Some regions were expected to be false-positives arising from multiple-trait testing. To address this, we developed a new approach to estimate genomewide significance that accounts for multiple-trait testing and for correlation between traits and that does not require a Bonferroni correction. With this approach, Dpter remained significantly linked to 20q13 (empirical genomewide P = .042), and airway obstruction remained linked to 12q24 at the suggestive level. Finally, we extended this method to show that the linkage of Dpter, atopy, BHR, FEV1, asthma, and airway obstruction to chromosome 20q13 is unlikely to be due to chance and may result from a quantitative trait locus in this region that affects several of these traits.  相似文献   

7.
8.
Palauans are an isolated population in Micronesia with lifetime prevalence of schizophrenia (SCZD) of 2%, compared to the world rate of approximately 1%. The possible enrichment for SCZD genes, in conjunction with the potential for reduced etiological heterogeneity and the opportunity to ascertain statistically powerful extended pedigrees, makes Palauans a population of choice for the mapping of SCZD genes. We have used a Markov-chain Monte Carlo method to perform a genomewide multipoint analysis in seven extended pedigrees from Palau. Robust multipoint parametric and nonparametric linkage (NPL) analyses were performed under three nested diagnostic classifications-core, spectrum, and broad. We observed four regions of interest across the genome. Two of these regions-on chromosomes 2p13-14 (for which, under core diagnostic classification, NPL=6.5 and parametric LOD=4.8) and 13q12-22 (for which, under broad diagnostic classification, parametric LOD=3.6, and, under spectrum diagnostic classification, parametric LOD=3.5)-had evidence for linkage with genomewide significance, after correction for multiple testing; with the current pedigree resource and genotyping, these regions are estimated to be 4.3 cM and 19.75 cM in size, respectively. A third region, with intermediate evidence for linkage, was identified on chromosome 5q22-qter (for which, under broad diagnostic classification, parametric LOD=2.5). The fourth region of interest had only borderline suggestive evidence for linkage (on 3q24-28; for this region, under broad diagnostic classification, parametric LOD=2.0). All regions exhibited evidence for genetic heterogeneity. Our findings provide significant evidence for susceptibility loci on chromosomes 2p13-14 and 13q12-22 and support both a model of genetic heterogeneity and the utility of a broader set of diagnostic classifications in the population from Palau.  相似文献   

9.
Paget disease of bone (PDB) is characterized by increased osteoclast activity and localized abnormal bone remodeling. PDB has a significant genetic component, with evidence of linkage to chromosomes 6p21.3 (PDB1) and 18q21-22 (PDB2) in some pedigrees. There is evidence of genetic heterogeneity, with other pedigrees showing negative linkage to these regions. TNFRSF11A, a gene that is essential for osteoclast formation and that encodes receptor activator of nuclear factor-kappa B (RANK), has been mapped to the PDB2 region. TNFRSF11A mutations that segregate in pedigrees with either familial expansile osteolysis or familial PDB have been identified; however, linkage studies and mutation screening have excluded the involvement of RANK in the majority of patients with PDB. We have excluded linkage, both to PDB1 and to PDB2, in a large multigenerational pedigree with multiple family members affected by PDB. We have conducted a genomewide scan of this pedigree, followed by fine mapping and multipoint analysis in regions of interest. The peak two-point LOD scores from the genomewide scan were 2.75, at D7S507, and 1.76, at D18S70. Multipoint and haplotype analysis of markers flanking D7S507 did not support linkage to this region. Haplotype analysis of markers flanking D18S70 demonstrated a haplotype segregating with PDB in a large subpedigree. This subpedigree had a significantly lower age at diagnosis than the rest of the pedigree (51.2+/-8.5 vs. 64.2+/-9.7 years; P=.0012). Linkage analysis of this subpedigree demonstrated a peak two-point LOD score of 4.23, at marker D18S1390 (straight theta=0), and a peak multipoint LOD score of 4.71, at marker D18S70. Our data are consistent with genetic heterogeneity within the pedigree and indicate that 18q23 harbors a novel susceptibility gene for PDB.  相似文献   

10.
To examine the genetic basis of age-related macular degeneration (ARMD), a degenerative disease of the retinal pigment epithelium and neurosensory retina, we conducted a genomewide scan in 34 extended families (297 individuals, 349 sib pairs) ascertained through index cases with neovascular disease or geographic atrophy. Family and medical history was obtained from index cases and family members. Fundus photographs were taken of all participating family members, and these were graded for severity by use of a quantitative scale. Model-free linkage analysis was performed, and tests of heterogeneity and epistasis were conducted. We have evidence of a major locus on chromosome 15q (GATA50C03 multipoint P=1.98x10-7; empirical P< or =1.0x10-5; single-point P=3.6x10-7). This locus was present as a weak linkage signal in our previous genome scan for ARMD, in the Beaver Dam Eye Study sample (D15S659, multipoint P=.047), but is otherwise novel. In this genome scan, we observed a total of 13 regions on 11 chromosomes (1q31, 2p21, 4p16, 5q34, 9p24, 9q31, 10q26, 12q13, 12q23, 15q21, 16p12, 18p11, and 20q13), with a nominal multipoint significance level of P< or =.01 or LOD > or =1.18. Family-by-family analysis of the data, performed using model-free linkage methods, suggests that there is evidence of heterogeneity in these families. For example, a single family (family 460) individually shows linkage evidence at 8 loci, at the level of P<.0001. We conducted tests for heterogeneity, which suggest that ARMD susceptibility loci on chromosomes 9p24, 10q26, and 15q21 are not present in all families. We tested for mutations in linked families and examined SNPs in two candidate genes, hemicentin-1 and EFEMP1, in subsamples (145 and 189 sib pairs, respectively) of the data. Mutations were not observed in any of the 11 exons of EFEMP1 nor in exon 104 of hemicentin-1. The SNP analysis for hemicentin-1 on 1q31 suggests that variants within or in very close proximity to this gene cause ARMD pathogenesis. In summary, we have evidence for a major ARMD locus on 15q21, which, coupled with numerous other loci segregating in these families, suggests complex oligogenic patterns of inheritance for ARMD.  相似文献   

11.
Evidence that a locus for familial high myopia maps to chromosome 18p.   总被引:38,自引:0,他引:38  
Myopia, or nearsightedness, is the most common human eye disorder. A genomewide screen was conducted to map the gene(s) associated with high, early-onset, autosomal dominant myopia. Eight families that each included two or more individuals with >=-6.00 diopters (D) myopia, in two or more successive generations, were identified. Myopic individuals had no clinical evidence of connective-tissue abnormalities, and the average age at diagnosis of myopia was 6.8 years. The average spherical component refractive error for the affected individuals was -9.48 D. The families contained 82 individuals; of these, DNA was available for 71 (37 affected). Markers flanking or intragenic to the genes for Stickler syndrome types 1 and 2 (chromosomes 12q13.1-q13.3 and 6p21.3, respectively), Marfan syndrome (chromosome 15q21.1), and juvenile glaucoma (chromosome 1q21-q31) were also analyzed. No evidence of linkage was found for markers for the Stickler syndrome types 1 and 2, the Marfan syndrome, or the juvenile glaucoma loci. After a genomewide search, evidence of significant linkage was found on chromosome 18p. The maximum LOD score was 9.59, with marker D18S481, at a recombination fraction of .0010. Haplotype analysis further refined this myopia locus to a 7.6-cM interval between markers D18S59 and D18S1138 on 18p11.31.  相似文献   

12.
Genomewide Scan of Multiple Sclerosis in Finnish Multiplex Families   总被引:13,自引:3,他引:10       下载免费PDF全文
Multiple sclerosis (MS) is a neurological, demyelinating disorder with a putative autoimmune etiology. It is thought to be a multifactorial disease with a complex mode of inheritance. Here we report the results of a two-stage genomewide scan for loci predisposing to MS. The first stage of the screen, with a low-resolution map, was performed in a selection of 16 pedigrees collected from an isolated Finnish population. Multipoint, non-parametric linkage analysis of the 328 markers did not reveal statistically significant results. However, 10 slightly interesting regions (P = .1-.15) emerged, including our previous findings of the HLA complex on 6p21 and a putative locus on 5p14-p12. Eight of these novel regions were further analyzed by use of denser marker maps, in the second stage of the scan. For the chromosomal regions 4cen, 11tel, and 17q, the statistical significance increased, but not conclusively; for 2q32 and 10q21, the statistical significance did not change. Accordingly, genotyping of the high-density markers in these regions was performed, and the data were analyzed by use of two-point, parametric linkage analysis using the complete pedigree information of the 21 Finnish multiplex families. We detected suggestive evidence for a predisposing locus on chromosomal region 17q22-q24. Several markers on 17q22-q24 yielded positive LOD scores, with the maximum LOD score (Zmax) occurring with D17S807 (Zmax = 2.8, theta = .04; dominant model). Interestingly, a suggestive linkage between MS and the markers on 17q22-q24 was also revealed by a recent genomewide scan in MS families from the United Kingdom.  相似文献   

13.
We conducted genomewide linkage analyses on 1,152 individuals from 250 families segregating for bipolar disorder and related affective illnesses. These pedigrees were ascertained at 10 sites in the United States, through a proband with bipolar I affective disorder and a sibling with bipolar I or schizoaffective disorder, bipolar type. Uniform methods of ascertainment and assessment were used at all sites. A 9-cM screen was performed by use of 391 markers, with an average heterozygosity of 0.76. Multipoint, nonparametric linkage analyses were conducted in affected relative pairs. Additionally, simulation analyses were performed to determine genomewide significance levels for this study. Three hierarchical models of affection were analyzed. Significant evidence for linkage (genomewide P<.05) was found on chromosome 17q, with a peak maximum LOD score of 3.63, at the marker D17S928, and on chromosome 6q, with a peak maximum LOD score of 3.61, near the marker D6S1021. These loci met both standard and simulation-based criteria for genomewide significance. Suggestive evidence of linkage was observed in three other regions (genomewide P<.10), on chromosomes 2p, 3q, and 8q. This study, which is based on the largest linkage sample for bipolar disorder analyzed to date, indicates that several genes contribute to bipolar disorder.  相似文献   

14.
Type 2 diabetes mellitus is a heterogeneous inherited disorder characterized by chronic hyperglycemia resulting from pancreatic beta-cell dysfunction and insulin resistance. Although the pathogenic mechanisms are not fully understood, manifestation of the disease most likely requires interaction between both environmental and genetic factors. In the search for such susceptibility genes, we have performed a genomewide scan in 58 multiplex families (comprising 440 individuals, 229 of whom were affected) from the Botnia region in Finland. Initially, linkage between chromosome 12q24 and impaired insulin secretion had been reported, by Mahtani et al., in a subsample of 26 families. In the present study, we extend the initial genomewide scan to include 32 additional families, update the affectation status, and fine map regions of interest, and we try to replicate the initial stratification analysis. In our analysis of all 58 families, we identified suggestive linkage to one region, chromosome 9p13-q21 (nonparametric linkage [NPL] score 3.9; P<.0002). Regions with nominal P values <.05 include chromosomes 2p11 (NPL score 2.0 [P<.03]), 3p24-p22 (NPL score 2.2 [P<.02]), 4q32-q33 (NPL score 2.5 [P<.01]), 12q24 (NPL score 2.1 [P<.03]), 16p12-11 (NPL score 1.7 [P<.05]), and 17p12-p11 (NPL score 1.9 [P<.03]). When chromosome 12q24 was analyzed in only the 32 additional families, a nominal P value <.04 was observed. Together with data from other published genomewide scans, these findings lend support to the hypothesis that regions on chromosome 9p13-q21 and 12q24 may harbor susceptibility genes for type 2 diabetes.  相似文献   

15.
The most frequent causes of death and disability in the Western world are atherosclerotic coronary artery disease (CAD) and acute myocardial infarction (MI). This common disease is thought to have a polygenic basis with a complex interaction with environmental factors. Here, we report results of a genomewide search for susceptibility genes for MI in a well-characterized U.S. cohort consisting of 1,613 individuals in 428 multiplex families with familial premature CAD and MI: 712 with MI, 974 with CAD, and average age of onset of 44.4+/-9.7 years. Genotyping was performed at the National Heart, Lung, and Blood Institute Mammalian Genotyping Facility through use of 408 markers that span the entire human genome every 10 cM. Linkage analysis was performed with the modified Haseman-Elston regression model through use of the SIBPAL program. Three genomewide scans were conducted: single-point, multipoint, and multipoint performed on of white pedigrees only (92% of the cohort). One novel significant susceptibility locus was detected for MI on chromosomal region 1p34-36, with a multipoint allele-sharing P value of <10(-12) (LOD=11.68). Validation by use of a permutation test yielded a pointwise empirical P value of.00011 at this locus, which corresponds to a genomewide significance of P<.05. For the less restrictive phenotype of CAD, no genetic locus was detected, suggesting that CAD and MI may not share all susceptibility genes. The present study thus identifies a novel genetic-susceptibility locus for MI and provides a framework for the ultimate cloning of a gene for the complex disease MI.  相似文献   

16.
Restless legs syndrome (RLS) is a common neurological condition with three loci (12q, 14q, and 9p) described so far, although none of these genes has yet been identified. We report a genomewide linkage scan of patients with RLS (n=37) assessed in a population isolate (n=530) of South Tyrol (Italy). Using both nonparametric and parametric analyses, we initially obtained suggestive evidence of a novel locus on chromosome 2q, with nominal evidence of linkage on chromosomes 5p and 17p. Follow-up genotyping yielded significant evidence of linkage (nonparametric LOD score 5.5, P相似文献   

17.
An Mr 57,000 single-chain chimeric plasminogen activator, K12G0S32, consisting of a variable region fragment (Fv) derived from the fibrin fragment D-dimer-specific monoclonal antibody MA-15C5 and of a 33-kDa (amino acids Ala132 to Leu411) recombinant single-chain urokinase-type plasminogen activator (rscu-PA-33k) was studied. K12G0S32, secreted by infected Spodoptera frugiperda insect cells at a rate of 1.5 micrograms/10(6) cells/48 h, was purified to homogeneity by ion-exchange chromatography and gel filtration. It was obtained essentially as a single-chain molecule with a Ka = 5.5 x 10(9) M-1 for immobilized fragment D-dimer, similar to that of MA-15C5. The specific activity of both its single-chain and two-chain forms on fibrin plates was 100,000 IU/mg of urokinase-type plasminogen activator (u-PA) equivalent. Activation of plasminogen by two-chain K12G0S32 obeyed Michaelis-Menten kinetics with Km = 2.9 +/- 0.6 microM and a k2 = 3.7 +/- 0.6 s-1 (mean +/- S.D.; n = 3), as compared to Km = 12 microM and k2 = 4.8 s-1 for rtcu-PA-32k (recombinant low Mr two-chain u-PA consisting of amino acids Leu144 to Leu411). Single-chain K12G0S32 induced a dose- and time-dependent lysis of a 125I-fibrin-labeled human plasma clot immersed in citrated human plasma; 50% lysis in 2 h was obtained with 0.70 +/- 0.07 micrograms/ml (mean +/- S.D.; n = 5), as compared with 8.8 +/- 0.1 micrograms/ml for rscu-PA-32k (recombinant low Mr single-chain u-PA consisting of amino acids Leu144 to Leu411) (mean +/- S.D.; n = 3). With two-chain K12G0S32, 50% clot lysis in 2 h required 0.25 +/- 0.03 micrograms/ml (mean +/- S.D.; n = 3), as compared with only 0.62 +/- 0.04 micrograms/ml (mean +/- S.D.; n = 2) for rtcu-PA-32k. These results indicate that low Mr single-chain u-PA can be targeted to a fibrin clot with a single-chain Fv fragment of a fibrin-specific antibody, resulting in a 13-fold increase of the fibrinolytic potency of the single-chain form and a 2.5-fold increase of the potency of the two-chain form.  相似文献   

18.
Chronic obstructive pulmonary disease (COPD) is a common, complex disease associated with substantial morbidity and mortality. COPD is defined by irreversible airflow obstruction; airflow obstruction is typically determined by reductions in quantitative spirometric indices, including forced expiratory volume at 1 s (FEV(1)) and the ratio of FEV(1) to forced vital capacity (FVC). To identify genetic determinants of quantitative spirometric phenotypes, an autosomal 10-cM genomewide scan of short tandem repeat (STR) polymorphic markers was performed in 72 pedigrees (585 individuals) ascertained through probands with severe early-onset COPD. Multipoint variance-component linkage analysis (using SOLAR) was performed for quantitative phenotypes, including FEV(1), FVC, and FEV(1)/FVC. In the initial genomewide scan, significant evidence for linkage to FEV(1)/FVC was demonstrated on chromosome 2q (LOD score 4.12 at 222 cM). Suggestive evidence was found for linkage to FEV(1)/FVC on chromosomes 1 (LOD score 1.92 at 120 cM) and 17 (LOD score 2.03 at 67 cM) and to FVC on chromosome 1 (LOD score 2.05 at 13 cM). The highest LOD score for FEV(1) in the initial genomewide scan was 1.53, on chromosome 12, at 36 cM. After inclusion of 12 additional STR markers on chromosome 12p, which had been previously genotyped in this population, suggestive evidence for linkage of FEV(1) (LOD score 2.43 at 37 cM) to this region was demonstrated. These observations provide both significant evidence for an early-onset COPD-susceptibility locus on chromosome 2 and suggestive evidence for linkage of spirometry-related phenotypes to several other genomic regions. The significant linkage of FEV(1)/FVC to chromosome 2q could reflect one or more genes influencing the development of airflow obstruction or dysanapsis.  相似文献   

19.
Genomewide linkage analysis has been extremely successful at identification of the genetic variation underlying single-gene disorders. However, linkage analysis has been less successful for common human diseases and other complex traits in which multiple genetic and environmental factors interact to influence disease risk. We hypothesized that a highly heritable complex trait, in which the contribution of environmental factors was relatively limited, might be more amenable to linkage analysis. We therefore chose to study stature (adult height), for which heritability is approximately 75%-90% (Phillips and Matheny 1990; Carmichael and McGue 1995; Preece 1996; Silventoinen et al. 2000). We reanalyzed genomewide scans from four populations for which genotype and height data were available, using a variance-components method implemented in GENEHUNTER 2.0 (Pratt et al. 2000). The populations consisted of 408 individuals in 58 families from the Botnia region of Finland, 753 individuals in 183 families from other parts of Finland, 746 individuals in 179 families from Southern Sweden, and 420 individuals in 63 families from the Saguenay-Lac-St.-Jean region of Quebec. Four regions showed evidence of linkage to stature: 6q24-25, multipoint LOD score 3.85 at marker D6S1007 in Botnia (genomewide P<.06), 7q31.3-36 (LOD 3.40 at marker D7S2195 in Sweden, P<.02), 12p11.2-q14 (LOD 3.35 at markers D12S10990-D12S398 in Finland, P<.05) and 13q32-33 (LOD 3.56 at markers D13S779-D13S797 in Finland, P<.05). In a companion article (Perola et al. 2001 [in this issue]), strong supporting evidence is obtained for linkage to the region on chromosome 7. These studies suggest that highly heritable complex traits such as stature may be genetically tractable and provide insight into the genetic architecture of complex traits.  相似文献   

20.
Autosomal dominant pure hereditary spastic paraplegia (ADPHSP) is clinically characterized by slowly progressive lower-limb spasticity. The condition is genetically heterogeneous, and loci have been mapped at chromosomes 2p, 8q, 14q, and 15q. We have performed a genomewide linkage screen on a large family with ADPHSP, in which linkage to all four previously known loci was excluded. Analysis of markers on chromosome 12q gave a peak pairwise LOD score of 3.61 at D12S1691, allowing us to assign a new locus for ADPHSP (a locus that we have designated "SPG10") to this region. Haplotype construction and analysis of recombination events narrowed the SPG10 locus to a 9.2-cM region between markers D12S368 and D12S83. In addition, our data strongly suggest that there are at least six ADPHSP loci, since we describe a further family in which linkage to all five known ADPHSP loci has been excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号