首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatocyte-like cells induced from bone marrow mesenchymal stem cells (BMSCs) recover liver function in animal models with liver failure. Our initial findings revealed that human BMSCs improved liver function in hepatitis B patients with end stage liver disease. However, the susceptibility of BMSCs to HBV infection during induction toward hepatocytes remains unknown. We have assessed whether BMSCs-derived hepatocyte-like cells can function like liver cells and be infected by HBV. A new and efficient way to direct the differentiation of BMSCs into functional hepatocytes was developed. BMSCs obtained from hepatitis B patients were induced to differentiate into hepatocytes through exposure to HGF, FGF-4, and EGF. After 6 days of exposure, BMSCs-derived hepatocyte-like cells that expressed a subset of hepatic genes and showed hepatic functions were obtained. HBV was used to infect the differentiated cells, and subsequently these cells were assayed for the presence of HBeAg, HBsAg, and HBV DNA. BMSCs proved resistant to HBV infection, both in vitro and during differentiation into hepatocytes in vitro. This demonstrates that BMSCs are resistant to HBV infection. BMSCs are viable for transplantation and should facilitate further research exploring the in vivo HBV-resistance of the hepatocytes derived from BMSCs after transplantation, a characteristic that could form the basis for hepatocyte transplantation.  相似文献   

2.
Tumor cells can evade the immune system through several mechanisms, one of which is to block DC maturation. It has been suggested that signaling via Toll-like receptors (TLR) may be involved in the induction of prophylactic anti-cancer immunity and in the treatment of established tumors. In the present study we found that high numbers of tumor cells interfere with BMDC activation induced by the TLR ligands LPS and poly IC. Tumor cells blocked TLR3- and TLR4-mediated induction of MHCII and the co-stimulatory molecules CD40 and CD86, as well as the cytokines IL-12, TNF-α and IL-6. Importantly, tumor cells induced inhibitory molecules (B7-DC, B7-H1 and CD80) on spleen DC in vivo and on BMDC, even in the presence of TLR ligands. Moreover, after a long exposure with tumor cells, purified BMDC were unable to respond to a second challenge with TLR ligands. The failure of tumor exposed-BMDC to express co-stimulatory molecules and cytokines in the presence of TLR ligands has implications for the future development of DC-based cancer immune therapies using TLR ligands as adjuvants for the activation of DC.  相似文献   

3.
A preparation of human genomic fragmented double-stranded DNA (dsDNA) was used as maturation stimulus in cultures of human dendritic cells (DCs) generated in compliance with the interferon protocol. Culturing of the DCs in medium with 5 μg/ml of the DNA preparation was associated with a decrease in the relative proportion of CD14 + cells and an increase in that of CD83 + cells. These changes are markers of DC maturation. The efficiency with which the DNA preparation was able to elicit DC maturation was commensurate with that of lypopolysaccharide from bacterial cell, the standard inducer of DC maturation. Generated ex vivo, matured in the presence of the human DNA preparation, pulsed with tumor antigens mouse DCs were used as a vaccine in biological tests for its antitumor activity. The experimental results demonstrate that reinfusion of mature pulsed with tumor antigens DCs cause a statistically significant suppression of tumor graft growth.  相似文献   

4.
5.
Recent studies reported that bone marrow cavity offers a widely distributed and well-vascularized microenvironment which is a considerable implantation site for bioartificial pancreas (BAP). In this study, the in vivo performance of BAPs in bone marrow was further demonstrated in a spontaneous diabetes animal. Mouse insulinoma cells encapsulating in agarose gel were enclosed in a calcium phosphate cement chamber to create a BAP. Ten BAPs were implanted into the femur bone marrow cavity of a diabetic feline. The preprandial blood glucose level, 2 h glucose curve, serum C-peptide level and physiological conditions of the recipient were recorded perioperatively. Results showed that the cat still suffered from hyperglycemia postoperatively. However, the physiological conditions of feline were improved with an increase of serum C-peptide level. The peak point of 2 h glucose curve decreased from 400 to 165-290 mg/dl. The efficiency of exogenous insulin extended from 2 to 10-14 h postoperatively which reveals that the implanted BAPs had partial function. This case report revealed that BAPs implanted in the bone marrow cavity for the spontaneous diabetic is effective. The implanted BAPs provided therapeutic benefit despite sustained hyperglycemia. Further study shall be considered to improve the outcomes of BAPs transplantation.  相似文献   

6.
In this study, we investigated the in vitro ACE inhibitory and in vivo antihypertensive effect of insect cell extracts. The IC50 of three insect cell lines from different type and insect species origin: S2 (embryo, Drosophila melanogaster), Sf21 (ovary, Spodoptera frugiperda) and Bm5 (ovary, Bombyx mori), were evaluated. Most interesting results were that the IC50 values ranged between 0.4 and 0.9 mg/ml, and that an extra hydrolysis with gastrointestinal enzymes did not increase the ACE inhibitory activity conspicuously. Finally, a single oral administration with a gavage of 150 mg cell extract/kg BW to spontaneous hypertensive rats (SHR) significantly decreased (p < 0.05) their systolic blood pressure (SBP) with 5-6% (9-12 mm Hg) compared to the controls at 6 h post-administration. Here the undigested and digested insect S2 cell extracts were equal in activity to lower the SBP. To the best of our knowledge, this is the first report of in vivo antihypertensive activity of insect cell extracts and this without an extra digestion requirement.  相似文献   

7.
This investigation was performed to evaluate the differentiation capacity and alteration in genes expression patterns during in vitro differentiation of bone marrow stem cells into primordial germ cells using static magnetic field (4 mT) and BMP-4 (25 ng/ml). The rate of differentiation was investigated using the Real Time-PCR method for tracing expression of differentiation markers (Oct-4, Nanog, C-Myc, Fragilis, Mvh and Stella). Then, immunocytochemical reaction was carried out for detection of marker proteins (Oct4 and Mvh). Increasing of the exposure time of the 4 mT SMF (24 and 48 h) and treatment time with 25 ng/ml BMP4 (48 and 96 h) indicated a marked decrease in expression of pluripotency genes (Oct-4, Nanog and C-Myc) and Oct4 protein and increase in primordial germ cell-specific genes (Fragilis, Mvh and Stella) and Mvh protein compared with the control group. Final results showed that in a synergistic manner, the combination of SMF with BMP4 exaggerates the differentiation potential of BMSCs to PGCs by activating the MAPK pathway and altering the Ca2+ concentration.  相似文献   

8.
In this study, we report that a polysaccharide isolated from a Chinese medicinal herb, Zhu Ling (the sclerotium of Polyporus umbellatus (Per) Fr), induces phenotypic and functional maturation of murine bone-derived dendritic cells (BMDCs). Treatment of BMDCs with Polyporus polysaccharide (PPS) resulted in enhanced cell-surface expression of CD86, as well as enhanced production of both interleukin (IL)-12 p40 and IL-10 in a dose-dependent manner. In addition, treatment of BMDCs with PPS resulted in increased T cell-stimulatory capacity and decreased phagocytic ability. PPS-induced production of IL-12 p40 was inhibited by monoclonal antibodies to Toll-like receptor 4 (TLR4). Flow cytometric analysis showed that fluorescence-labeled PPS (f-PPS) bound specifically to BMDCs. This binding was blocked by both unlabeled PPS and anti-TLR4, but not by anti-TLR2 and anti-CR3 monoclonal antibodies. Taken together, our data show that PPS promotes the activation and maturation of murine BMDCs via TLR4.  相似文献   

9.
Several recent studies have reported that bone marrow cells (BMCs) have the ability to generate functional hepatocytes. However, the efficiency at which BMC transplantation generates functional hepatocytes is rather low. We assumed that if BMCs accumulated directly in liver, the functional BMC-derived hepatocytes should increase efficiently. We tried to increase the accumulation of BMCs directly in liver through the interaction between hepatic asialoglycoprotein receptor and desialylated BMCs. Desialylated BMCs were produced with treatment of neuraminidase. Desialylated BMCs that expressed green fluorescent protein (GFP) were injected into Long Evans Cinnamon (LEC) rats, a human Wilson's disease model, intravenously. At 3 and 5 months after transplantation, GFP-expressing hepatocyte nodules appeared in the liver of these BMC-transplanted LEC rats. These findings suggest that the functional BMC-derived hepatocytes can be generated by the direct accumulation of BMCs and that this strategy is new BMC therapy for liver regeneration.  相似文献   

10.
目的探讨骨髓间充质干细胞(BMSCs)中miR-155表达水平改变后,通过诱导树突状细胞(DC)实现对免疫调节能力的影响。 方法实验分为control组、miR-155 agomir NC组、miR-155 agomir组、miR-155 antagomir NC组和miR-155 antagomir组,通过脂质体转染特异性调控BMSC中miR-155表达量后诱导DC 48 h,检测该诱导过程对DC的成熟度和迁移能力的影响;经诱导的DC与T细胞共培养72 h后检测T细胞增殖能力。多组间分析采用One-?way ANOVA进行统计学分析,两组间采用t检验进行统计学分析。 结果流式柱形直观图可见miR-155 angomir组T细胞增殖能力低于其他组。提高miR-155表达水平后,MSCs诱导的DC细胞成熟的表面标志CD40表达量由100%下降至85%(t = 33.71,P < 0.05);CD86表达水平由100%下降至75%(t = 57.00,P < 0.05)。miR-155 agomir组的BMSCs诱导的DC的迁移能力较其对照组减弱(t = 7.35,P < 0.05)。提高BMSCs中miR-155表达水平后,其诱导的DC的NF-κβ信号通路蛋白表达下降(t = 23.32,P < 0.05);AKT信号通路蛋白表达量下降(t?= 22.21,P < 0.05)。 结论BMSCs高表达miR-155后,可以通过抑制NF-κβ和AKT途径诱导耐受性DC的产生,通过诱导DC减少T细胞的增殖从而对免疫调节进行影响。  相似文献   

11.
12.
Dendritic cells (DC) are professional antigen-presenting cells of the immune system that play a key role in regulating T cell-based immunity. In vivo, the capacity of DC to activate T cells depends on their ability to migrate to the T cell areas of lymph nodes as well as on their maturation state. Depending on their cytokine-secreting profile, DC are able to skew the immune response in a specific direction. In particular, IL-12p70 producing DC drive T cells towards a T helper 1 type response. A serious disadvantage of current clinical grade ex vivo generated monocyte-derived DC is the poor IL-12p70 production. We have investigated the effects of Toll-like receptor (TLR)-mediated maturation on ex vivo generated human monocyte-derived DC. We demonstrate that in contrast to cytokine-matured DC, DC matured with poly(I:C) (TLR3 ligand) and/or R848 (TLR7/8 ligand) are able to produce vast amounts of IL-12p70, but exhibit a reduced migratory capacity. The addition of prostaglandin E(2) (PGE(2)) improved the migratory capacity of TLR-ligand matured DC while maintaining their IL-12p70 production upon T cell encounter. We propose a novel clinical grade maturation protocol in which TLR ligands poly(I:C) and R848 are combined with PGE(2) to generate DC with both high migratory capacity and IL-12p70 production upon T cell encounter.  相似文献   

13.
During a search for glucose-regulated abundant mRNAs in the diabetic rat kidney, we cloned thyroid hormone binding protein (THBP), also known as μ-crystallin or CRYM. The aim of this study was to investigate the effect of hyperglycemia/high glucose on the expression of THBP. THBP mRNA copy numbers were determined in kidneys and hearts of diabetic GK rats vs normoglycemic Wistar rats, and in human mesangial cells (HMCs) exposed to high glucose using real-time qPCR, and THBP protein levels were measured by Western blotting and immunofluorescence. Intracellular ROS was measured in THBP transfected cells using DCF fluorescence. Hyperglycemia significantly increased THBP mRNA in GK rat kidneys (326 ± 50 vs 147 ± 54, p < 0.05), and hearts (1583 ± 277 vs 191 ± 63, p < 0.05). Moreover, the levels of THBP mRNA increased with age and hyperglycemia in GK rat kidneys, whereas in normoglycemic Wistar rat kidneys there was a decline with age. High glucose significantly increased THBP mRNA (92 ± 37 vs 18 ± 4, p < 0.005), and protein in HMCs. The expression of THBP as a fusion protein in transfected HMCs resulted in reduction of glucose-induced intracellular ROS. We have shown that THBP mRNA is increased in diabetic kidney and heart, is regulated by high glucose in renal cells, and appears to attenuate glucose-induced intracellular ROS. These data suggest that THBP may be involved in the cellular pathways activated in response to glucose. This is the first report linking hyperglycemia with THBP and suggests that the role of THBP in diabetic complications should be further investigated.  相似文献   

14.
Human dental stem or precursor cells can differentiate into multiple cell types like adipocytes, osteoblasts or chondrocytes. Recently, a number of different human dental stem cell lines were differentiated into neurons. This makes dental stem cells interesting as possible cell-based therapeutics for neural degenerative diseases. To test this hypothesis, we have investigated the neural differentiation potential of murine dental follicle precursor cells (mDFPCs). The mDFPC cell line was newly established without cell immortalization. After differentiation, neural cell marker expression in mDFPCs was checked and compared with that of murine retinal progenitor cells (mRPCs). Differentiated mDFPCs became neuron-like cells with small cell bodies and long/branching neurites, similar to differentiated mRPCs. However, mRPCs showed more complete neural differentiation. Furthermore, 5% of the differentiated mDFPCs and 37% of the differentiated mRPCs were positive for the glia cell marker GFAP (glial fibrillary acidic protein). The data presents new evidence of neural differentiation of mDFPCs, but only a small percentage of mDFPCs differentiated into glia cells, unlike mRPCs.  相似文献   

15.
16.

Background

Impaired cutaneous wound healing is common in humans, and treatments are often ineffective. Based on the significant emotional and economic burden of impaired wound healing, innovative therapies are needed. The potential of mesenchymal stromal cell (MSC)–secreted factors to treat cutaneous wounds is an active area of research that is in need of refinement before effective clinical trials can be initiated. The aims of the present study were to (i) study which MSC-secreted factors stimulate dermal fibroblast (DF) migration in vitro and (ii) evaluate the potential of these factors to promote wound healing in vivo.

Methods

To this end, MSCs were isolated from the peripheral blood of healthy horses, a physiologically relevant large animal model appropriate for translational wound-healing studies. Conditioned medium (CM) from cultured equine MSCs was analyzed using liquid chromatography-mass spectrophotometry (LC-MS/MS) to identify secreted proteins of interest. Double-stranded RNA-mediated interference (RNAi) was used to silence the genes encoding selected proteins, and the effects of CM from these transfected MSCs on migration of cultured equine DF cells in vitro and full-thickness wounds in mice were evaluated.

Results

We found that MSC-derived plasminogen activator inhibitor-1 (PAI-1) and tenascin-C significantly increased DF migration in vitro and improved wound healing in vivo by decreasing time to wound closure.

Discussion

These results suggest that in a complex wound environment, MSC-secreted factors PAI-1 and tenascin-C contribute to the positive effect of therapeutically applied MSC CM on wound healing.  相似文献   

17.
The serine/threonine kinase Akt has three highly homologous isoforms in mammals: Akt1, Akt2, and Akt3. Recent studies indicate that Akt is often constitutively active in many types of human malignancy. Here we investigated the expression and function of Akt isoforms in human prostatic carcinoma cells. Initially, we used Western blotting to examine Akt expression in four human prostate cancer cell lines. Next, small-interfering RNAs (siRNAs) specific for Akt isoforms were used to elucidate their role on the in vitro and in vivo growth of prostate cancer cells. Expression of Akt1 and Akt2 was detected in all cells tested, but Akt3 was expressed only in cancer cells that did not express androgen receptors. All synthetic siRNAs against Akt isoforms suppressed their expression and inhibited the growth of cancer cells in vitro. Furthermore, atelocollagen-mediated systemic administration of siRNAs significantly reduced the growth of tumors that had been subcutaneously xenografted. These results suggest that targeting Akt isoforms could be an effective treatment for prostate cancers.  相似文献   

18.
19.
Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40ng/ml in the culture medium, but decreased at 80ng/ml. Under CoCl(2)-induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or anti-angiogenic activities of BMSCs.  相似文献   

20.
Male mice with androgen receptor knock-out (ARKO) show significant bone loss at a young age. However, the lasting effect of AR inactivation on bone in aging male mice remains unclear. We designed this study to evaluate the effect of AR on bone quality in aging male mice and to find the possible causes of AR inactivation contributing to the bone loss. The mice were grouped according to their ages and AR status and their trabecular bones were examined by micro-CT analysis at 6, 12, 18, and 30 weeks old. We found that bone mass consistently decreased and the bone microarchitectures continuously deteriorated in male ARKO mice at designated time points. To determine the cause of the bone loss in ARKO mice, we further examined the role of AR in bone cell fate decision and differentiation and we conducted experiments on bone marrow stromal cells (BMSC) obtained from wild type (WT) and AR knockout (KO) mice. We found that ARKO mice had higher numbers of colony formation unit-fibroblast (CFU-F), and CD44 and CD34 positive cells in bone marrow than WT mice. Our Q-RT-PCR results showed lower expression of genes linked to osteogenesis in BMSCs isolated from ARKO mice. In conclusion, AR nullification disrupted bone microarchitecture and caused trabecular bone mass loss in male ARKO mice. And the fate of BMSCs was impacted by the loss of AR. Therefore, these findings suggest that AR may accelerate the use of progenitor cells and direct them into osteogenic differentiation to affect bone metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号