首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present novel microfluidic experiments to quantify population-scale transport parameters (chemotactic sensitivity χ0 and random motility μ) of a population of bacteria. Previously, transport parameters have been derived theoretically from single-cell swimming behavior using probabilistic models, yet the mechanistic foundations of this upscaling process have not been verified experimentally. We designed a microfluidic capillary assay to generate and accurately measure gradients of chemoattractant (α-methylaspartate) while simultaneously capturing the swimming trajectories of individual Escherichia coli bacteria using videomicroscopy and cell tracking. By measuring swimming speed and bias in the swimming direction of single cells for a range of chemoattractant concentrations and concentration gradients, we directly computed the chemotactic velocity VC and the associated chemotactic sensitivity χ0. We then show how μ can also be readily determined using microfluidics but that a population-scale microfluidic approach is experimentally more convenient than a single-cell analysis in this case. Measured values of both χ0 [(12.4 ± 2.0) × 10−4 cm2 s−1] and μ [(3.3 ± 0.8) × 10−6 cm2 s−1] are comparable to literature results. This microscale approach to bacterial chemotaxis lends experimental support to theoretical derivations of population-scale transport parameters from single-cell behavior. Furthermore, this study shows that microfluidic platforms can go beyond traditional chemotaxis assays and enable the quantification of bacterial transport parameters.  相似文献   

2.
The widely held view that the maximum efficiency of a photosynthetic pigment system is given by the Carnot cycle expression (1 − T/Tr) for energy transfer from a hot bath (radiation at temperature Tr) to a cold bath (pigment system at temperature T) is critically examined and demonstrated to be inaccurate when the entropy changes associated with the microscopic process of photon absorption and photochemistry at the level of single photosystems are considered. This is because entropy losses due to excited state generation and relaxation are extremely small (ΔS ? T/Tr) and are essentially associated with the absorption-fluorescence Stokes shift. Total entropy changes associated with primary photochemistry for single photosystems are shown to depend critically on the thermodynamic efficiency of the process. This principle is applied to the case of primary photochemistry of the isolated core of higher plant photosystem I and photosystem II, which are demonstrated to have maximal thermodynamic efficiencies of ξ > 0.98 and ξ > 0.92 respectively, and which, in principle, function with negative entropy production. It is demonstrated that for the case of ξ > (1 − T/Tr) entropy production is always negative and only becomes positive when ξ < (1 − T/Tr).  相似文献   

3.
Peracetylated 2-deoxy-d-erythro-pentose (2-deoxy-d-ribose) was synthesized through the acetylation of 2-deoxy-d-ribose with acetic anhydride in pyridine, and the products (including all four ring forms) exist in form of either a white solid or a syrup. A single crystal of 1,3,4-tri-O-acetyl-2-deoxy-β-d-erythro-pentopyranose was obtained from the syrup and its structure was determined by X-ray diffraction. The crystal adopts the 1C4 conformation, presenting an orthorhombic system, space group P212121 with Z = 4, unit cell dimensions a = 7.2274 (3) Å, b = 8.0938 (5) Å, and c = 22.0517 (11) Å.  相似文献   

4.
A biotin-coated quartz crystal microbalance (QCM) chip was prepared by dip-coating a long-chain alkanethiol-modified crystal with precoupled dextran-biotin hydrogels. The resulting biotin chip was used to affinity-immobilize streptavidin (SAv) and was then further employed for various biosensor assays. First, the SAv chip allowed efficient on-line binding of biotinylated bovine serum albumin (bBSA), followed by a sensitive and specific response toward anti-bovine serum albumin (BSA) antibodies. Three consecutive immunoassays were reproducibly demonstrated with a single chip. The apparent binding kinetics with kon = 5.9 μM−1 h−1, koff = 10.1 h−1, and KD = 1.71 μM was readily resolved by fitting the real-time sensorgrams. Second, the capability of the SAv chip to selectively recognize recombinant Escherichia coli with flagella displaying an artificial SAv binding peptide, Strep-tag II, was demonstrated by QCM analysis and verified by scanning transmission electron microscope (STEM) image analysis with biotin-coated gold nanoparticles as the label. Finally, the affinity of the cell-displayed Strep-tag II peptide to surface-coated SAv, KD = 6.8 × 108 CFU/ml, was resolved on-line using equilibrium binding kinetics by QCM. This study presents an easy, economical, and reliable method of preparing high-performance SAv-coated biotin chips with potential for application in real-time repetitive immunoassays, on-line binding kinetics studies, and high-affinity peptide screening.  相似文献   

5.
A novel mixture cations templated indium phosphates, Li(C2N2H10)[In2(HPO4)3(PO4)], has been synthesized under mild hydrothermal conditions and characterized by elemental analysis and FT-IR spectrum. The crystal structure of title compound was determined by single crystal X-ray diffraction data. It belongs to monoclinic, space group P2/n with unit cell dimension a = 9.4692(13) Å, b = 9.1622(12) Å, c = 9.7063(14) Å, β = 117.5620(10)°. Its structure is characterized as a three-dimensional open-framework with 8-membered ring channels along a axis, where the inorganic lithium cation and organic double-protonated ethylenediamine cation are located and interact with the framework both electrostatically and via hydrogen bonds of N-H?O.  相似文献   

6.
Three mesocosm wetlands (250 cm × 100 cm × 100 cm) with different wetland plants (Calamgrostis angustifolia, CA, Carex lasiocarpa, CL, and C. angustifolia/C. lasiocarpa mixture, AL, respectively) and hydrologic regimes were set to test migration and retention of exogenous dissolved iron ((NH4)2Fe(SO4)2of 40 mg Fe(II) L−1) in the Sanjiang Plain Wetland in northeast China. The experiment was designed as two stages: open migration period (OMP) for 1.5 d and close retention period (CRP) for 28.5 d. Based on the outflow Fe(II) concentration during the OMP, retention efficiencies (RE) and iron retention fluxes adjusted by area (RFad) in the three mesocosm wetlands were calculated, and the migration of iron were modeled using the first-order kinetic model. Outflow pH decreased gradually from a weak alkaline condition to a weak acid condition during the OMP, and then increased during the CRP, while outflow Eh and DO decreased during the experiment. The three mesocosm wetlands had considerable RE ranging from 75% to 98%, with the averaged RFad of 4.31 ± 0.17, 4.20 ± 0.16, and 4.37 ± 0.13 g m−2 h−1 for CA, CL, and AL, respectively. The reduction conditions in the mesocosm wetlands developed after 4 d or 12 d and the former retained iron during the OMP became mobile and discharged primarily in the form of Fe(III). The first-order kinetic model could simulate the outflow concentration of dissolved iron during the OMP (R2 = 0.91, 0.69, and 0.68 for CA, CL, and AL, respectively), while the outflow dissolved iron during the CMP was difficult to model because the changed pH and Eh conditions in the mesocosm wetlands cause the former precipitated iron to be mobile after several days.  相似文献   

7.
Systemic administration with bone marrow mesenchymal stem cells (BMSCs) is a promising approach to cure myocardial ischemia (MI), while the efficacy of cell transplantation is limited by the low engraftment of BMSCs. Tanshinone IIA (Tan IIA) has been reported many times for the treatment of MI. Therefore, the present study was performed to investigate whether Tan IIA could increase the migration of BMSCs to ischemic region and its potential mechanisms. In our study, we found that combination treatment with Tan IIA and BMSCs significantly alleviated the infarct size when compared with control group (31.46 ± 3.00% vs. 46.95 ± 6.51%, p < 0.05). Results of real-time PCR showed that Tanshinone IIA (Tan IIA) did increase the migration of BMSCs to ischemic region in vivo, which was correlated with cardiac function recovery after MI. Furthermore, 2 μM Tan IIA could enhance the migration capability of BMSCs in vitro (3.69-fold of control), and this enhancement could be blocked by AMD3100 (a CXC chemokine receptor 4 blocker). CXCR4, together with its specific receptor, stromal cell-derived factor-1 (SDF-1) plays a critical role in the stem cell recruitment. Our experiment indicated that Tan IIA could promote SDF-1α expression in the infarct area and enhance the CXCR4 expression of BMSCs in vitro. Therefore, we postulated that Tan IIA could increase the BMSCs migration via up-regulating SDF1/CXCR4 axis.  相似文献   

8.
System A-mediated amino acid transport across the placenta is important for the supply of neutral amino acids needed for fetal growth. All three system A subtypes (SNAT1, 2, and 4) are expressed in human placental trophoblast suggesting there is an important biological role for each. Placental system A activity increases as pregnancy progresses, coinciding with increased fetal nutrient demands. We have previously shown SNAT4-mediated system A activity is higher in first trimester than at term, suggesting that SNAT1 and/or SNAT2 are responsible for the increased system A activity later in gestation. However, the relative contribution of each subtype to transporter activity in trophoblast at term has yet to be evaluated. The purpose of this study was to identify the predominant subtype of system A in cytotrophoblast cells isolated from term placenta, maintained in culture for 66 h, by: (1) measuring mRNA expression of the three subtypes and determining the Michaelis-Menten constants for uptake of the system A-specific substrate, 14C-MeAIB, (2) investigating the contribution of SNAT1 to total system A activity using siRNA. Results: mRNA expression was highest for the SNAT1 subtype of system A. Kinetic analysis of 14C-MeAIB uptake revealed two distinct transport systems; system 1: Km = 0.38 ± 0.12 mM, Vmax = 27.8 ± 9.0 pmol/mg protein/20 min, which resembles that reported for SNAT1 and SNAT2 in other cell types, and system 2: Km = 45.4 ± 25.0 mM, Vmax = 1190 ± 291 pmol/mg protein/20 min, which potentially represents SNAT4. Successful knockdown of SNAT1 mRNA using target-specific siRNA significantly reduced system A activity (median 75% knockdown, n = 7). Conclusion: These data enhance our limited understanding of the relative importance of the system A subtypes for amino acid transport in human placental trophoblast by demonstrating that SNAT1 is a key contributor to system A activity at term.  相似文献   

9.
Galectins are a family of lectins with a conserved carbohydrate recognition domain that interacts with β-galactosides. By binding cell surface glycoconjugates, galectin-1 (gal-1) is involved in cell adhesion and migration processes and is an important regulator of tumor angiogenesis. Here, we used heteronuclear NMR spectroscopy and molecular modeling to investigate lactose binding to gal-1 and to derive solution NMR structures of gal-1 in the lactose-bound and unbound states. Structure analysis shows that the β-strands and loops around the lactose binding site, which are more open and dynamic in the unbound state, fold in around the bound lactose molecule, dampening internal motions at that site and increasing motions elsewhere throughout the protein to contribute entropically to the binding free energy. CD data support the view of an overall more open structure in the lactose-bound state. Analysis of heteronuclear single quantum coherence titration binding data indicates that lactose binds the two carbohydrate recognition domains of the gal-1 dimer with negative cooperativity, in that the first lactose molecule binds more strongly (K1 = 21 ± 6 × 103 M− 1) than the second (K2 = 4 ± 2 × 103 M− 1). Isothermal calorimetry data fit using a sequential binding model present a similar picture, yielding K1 = 20 ± 10 × 103 M− 1 and K2 = 1.67 ± 0.07 × 103 M− 1. Molecular dynamics simulations provide insight into structural dynamics of the half-loaded lactose state and, together with NMR data, suggest that lactose binding at one site transmits a signal through the β-sandwich and loops to the second binding site. Overall, our results provide new insight into gal-1 structure-function relationships and to protein-carbohydrate interactions in general.  相似文献   

10.
Reactions of the 1:2 condensate (L) of benzil dihydrazone and 2-acetylpyridine with Hg(ClO4)2 · xH2O and HgI2 yield yellow [HgL2](ClO4)2 (1) and HgLI2 (2), respectively. Homoleptic 1 is a 8-coordinate double helical complex with a Hg(II)N8 core crystallising in the space group Pbca with cell dimensions: a = 16.2250(3), b = 20.9563(7), c = 31.9886(11) Å. Complex 2 is a 4-coordinate single helical complex having a Hg(II)N2I2 core crystallising in the space group P21/n with cell dimensions a = 9.8011(3), b = 17.6736(6), c = 16.7123(6) Å and β = 95.760(3)o. In complex 1, the N-donor ligand L uses all of its binding sites to act as tetradentate. On the other hand, it acts as a bidentate N-donor ligand in 2 giving rise to a dangling part. From variable temperature 1H NMR studies both the complexes are found to be stereochemically non-rigid in solution. In the case of 2, the solution process involves wrapping up of the dangling part of L around the metal.  相似文献   

11.
One hetero-bimetallic Cu(II)/Cd(II) compound, [CdII(H2O)2][CuII(mal)2(H2O)2]n (1) (H2mal = malonic acid) has been synthesized and characterized using single crystal X-ray crystallography, thermogravimetric (TG) studies and X-ray powder diffraction (XRPD) measurements. The compound crystallizes in orthorhombic Pbcn space group having cell dimensions a = 6.6260(12) Å, b = 13.958(2) Å and c = 13.052(2) Å. The solid state structure of compound 1 demonstrates a 3D pillared layered coordination network generated through the simultaneous bridging as well as chelating mode of malonate towards the Cd(II) and Cu(II), respectively. TG analysis reveals relatively high thermal stability for the compound (decomposition temperature ∼320 °C). The thermal study also reveals that the coordinated waters attached to both the metal centers (Cd(II) and Cu(II)) are reversibly lost and gained and this behavior is also corroborated by XRPD studies.  相似文献   

12.
Agricultural, industrial, and urban activities are the major sources for eutrophication of surface water ecosystems. Currently, determination of nutrients in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words, little to no effort has been devoted to monitoring real-time variations of nutrients in surface water ecosystems due to the lack of suitable and/or cost-effective wireless sensors. However, when considering human health or instantaneous outbreaks such as algal blooms, timely water-quality information is very critical. In this study, we developed a new paradigm of a dynamic data-driven application system (DDDAS) for estimating the real-time loads of nitrogen (N) in a surface water ecosystem. This DDDAS consisted of the following components: (1) a Visual Basic (VB) program for downloading US Geological Survey real-time chlorophyll and discharge data from the internet; (2) a STELLA model for evaluating real-time N loads based on the relationship between chlorophyll and N as well as on river discharge; (3) a batch file for linking the VB program and STELLA model; and (4) a Microsoft Windows Scheduled Task wizard for executing the model and displaying outputs on a computer screen at selected schedules. The DDDAS was validated using field measurements with a very good agreement prior to its applications. Results show that the real-time loads of TN (total N) and NOx (nitrate and nitrite) varied from positive to negative with the maximums of 1727 kg/h TN and 118 kg/h NOx and the minimums of −2483 kg/h TN and −168 kg/h NOx at the selected site. The negative loads occurred because of the back flow of the river in the estuarine environment. Our study suggests that the DDDAS developed in this study was feasible for estimating the real-time variations of TN and NOx in the surface water ecosystem.  相似文献   

13.
In this study, we investigated the in vitro ACE inhibitory and in vivo antihypertensive effect of insect cell extracts. The IC50 of three insect cell lines from different type and insect species origin: S2 (embryo, Drosophila melanogaster), Sf21 (ovary, Spodoptera frugiperda) and Bm5 (ovary, Bombyx mori), were evaluated. Most interesting results were that the IC50 values ranged between 0.4 and 0.9 mg/ml, and that an extra hydrolysis with gastrointestinal enzymes did not increase the ACE inhibitory activity conspicuously. Finally, a single oral administration with a gavage of 150 mg cell extract/kg BW to spontaneous hypertensive rats (SHR) significantly decreased (p < 0.05) their systolic blood pressure (SBP) with 5-6% (9-12 mm Hg) compared to the controls at 6 h post-administration. Here the undigested and digested insect S2 cell extracts were equal in activity to lower the SBP. To the best of our knowledge, this is the first report of in vivo antihypertensive activity of insect cell extracts and this without an extra digestion requirement.  相似文献   

14.
The customary practice in bovine in vitro embryo production (IVP) is to handle oocytes and embryos in groups; although there are several reasons for establishing an IVP system for individual embryos that allows for following a single oocyte from retrieval through development to the blastocyst stage. To date, reports of individual IVP are inconsistent, and in most cases, resulted in unsatisfactory blastocyst rates. The objective of this study was to develop an efficient system for routine in vitro culture of individual bovine embryos. Single culture of zygotes in 2 different culture volumes (20 and 500 μL) yielded less than 3% blastocysts in experiment 1. In an attempt to improve these results, cumulus cells were added to the culture medium in experiment 2, after which blastocyst rates increased from 2.9 to 21.8% (P < 0.05). The third experiment revealed that an atmospheric oxygen tension, which is commonly used with somatic cell coculture, was not beneficial during individual embryo-cumulus cell coculture, because it resulted in lower blastocyst rates (Odds ratio 0.57, P < 0.001) and in lower blastocyst cell numbers (P < 0.05), when compared to culture in 5% oxygen. Grouped vs. single culture and reduced oxygen tension did not have a significant effect on cleavage and hatching rates. In experiment 4, three different cumulus cell coculture conditions during individual culture were tested and compared with the cleavage, blastocyst and hatching rates, and cell number of group culture (73.2%, 36.4%, 66.7% and, 155.1 ± 7.26, respectively). The outcome variables after individual embryo culture on a 5-day-old cumulus cell monolayer (74.1%, 38.2%, 71.9% and 133.4 ± 9.16, respectively), and single culture in the presence of added cumulus cells (69.9%, 31.9%, 66.7% and 137.3 ± 8.01, respectively) were not significantly different from those obtained after group culture (P < 0.05). Though, individual culture in a cumulus cell conditioned medium significantly reduced both the cleavage (59.0%) and blastocyst rates (6.3%). These results demonstrate that single culture of bovine zygotes can be fully sustained by coculture with cumulus cells in a low oxygen environment; implementation of these findings in our IVP system produced blastocysts comparable in quantity and quality to those obtained by group culture. These results were consistently achieved after acquiring experience and expertise in the handling of single zygotes.  相似文献   

15.
Lei Yang 《Inorganica chimica acta》2005,358(15):4505-4510
An organically templated zinc-substituted gallium phosphite, [H3N(CH2)2NH3]1/2 · [GaZn(HPO3)3(H2O)2] was synthesized under mild hydrothermal conditions in the presence of ethylenediamine (en) as structure-directing agent and characterized by single-crystal X-ray diffraction analysis. It crystallizes in the orthorhombic space group Pbcn with unit cell parameters: a = 18.6146(10) Å, b = 11.0454(6) Å, c = 10.9074(4) Å, V = 2242.62(19) Å3 and Z = 8. This compound has a three-dimensional framework built up from secondary building units (SBU) of Ga(III) (or Zn(II)) and HPO3 pseudopyramid by sharing vertices. The structure displays a two-dimensional channel system running along the [0 0 1] and [0 1 0] direction with 5-, 8- and 10-membered rings. The diprotonated ethylenediamine template molecules are located in the channels. In this structure, some of the Ga(III) sites are occupied by Zn(II) atoms. The compound was also characterized by IR spectroscopy, inductively coupled plasma (ICP), X-ray photoelectron spectra (XPS), differential thermal and thermogravimetric analyses.  相似文献   

16.
The maximal growth rates (μmax) of 8 species of marine phytoplankton were studied in detail. A Logistic growth model was used to describe the growth process of phytoplankton and the averaged plotting correlation coefficient was 1.00 ± 0.01 (mean ± standard deviation). The size distribution of phytoplankton could be well represented by single or combined Gaussian distribution functions. The size distribution of phytoplankton was investigated by daily analysis, and the variation of the median equivalent spherical diameter (MESD) was recorded. The size of algal cells varied throughout the process of population growth, and the size distribution characteristic of the two species of pyrrophytes investigated also changed during the growth process. The relation between maximum growth rate and MESD could be expressed by the equation μmax = a * MESDb (where μmax is the maximum specific growth rate, MESD is the median equivalent spherical diameter, and a and b are constants equal to 2.10 × 105 and − 1.15, respectively), estimated by nonlinear regression analysis with the allometric function. The dependence of maximum cell density on algal MESD was also investigated and the relationship Bf = 1.56 × 107 MESD− 1.20 was obtained (where Bf is the maximum cell density).  相似文献   

17.
The cell membrane comprises numerous protein and lipid molecules capable of asymmetric organization between leaflets and liquid-liquid phase separation. We use single supported lipid bilayers (SLBs) to model cell membranes, and study how cholesterol and asymmetrically oriented ganglioside receptor GM1 affect membrane structure using synchrotron x-ray reflectivity. Using mixtures of cholesterol, sphingomyelin, and 1,2-dioleoyl-sn-glycero-3-phosphocholine, we characterize the structure of liquid-ordered and liquid-disordered SLBs in terms of acyl-chain density, headgroup size, and leaflet thickness. SLBs modeling the liquid-ordered phase are 10 Å thicker and have a higher acyl-chain electron density (〈ρchain〉 = 0.33 e3) compared to SLBs modeling the liquid-disordered phase, or pure phosphatidylcholine SLBs (〈ρchain〉 = 0.28 e3). Incorporating GM1 into the distal bilayer leaflet results in membrane asymmetry and thickening of the leaflet of 4-9 Å. The structural effect of GM1 is more complex in SLBs of cholesterol/sphingomyelin/1,2-dioleoyl-sn-glycero-3-phosphocholine, where the distal chains show a high electron density (〈ρchain〉 = 0.33 e3) and the lipid diffusion constant is reduced by ∼50%, as measured by fluorescence microscopy. These results give quantitative information about the leaflet asymmetry and electron density changes induced by receptor molecules that penetrate a single lipid bilayer.  相似文献   

18.
Neurotransmitters, hormones, or dyes may be released from vesicles via a fusion pore, rather than by full fusion of the vesicle with the plasma membrane. If the lifetime of the fusion pore is comparable to the time required for the substance to exit the vesicle, only a fraction of the total vesicle content may be released during a single pore opening. Assuming 1), fusion pore lifetimes are exponentially distributed (τP), as expected for simple single channel openings, and 2), vesicle contents are lost through the fusion pore with an exponential time course (τD), we derive an analytical expression for the probability density function of the fraction of vesicle content released (F): dP/dF = A (1 − F)(A-1), where A = τD/τP. If A > 1, the maximum of the distribution is at F = 0; if A < 1, the maximum is at F = 1; if A = 1, the distribution is perfectly flat. Thus, the distribution never has a peak in the middle (0 < F < 1). This should be considered when interpreting the distribution of miniature synaptic currents, or the fraction of FM dye molecules lost during a single fusion pore opening event.  相似文献   

19.
Five lanthanide coordination polymers with composition {[Ln(pzdc)1.5(H2O)3] · 0.5H2O}, (Ln = Pr, 1; Nd, 2; Sm, 3; Eu, 4; Gd, 5; pzdc = 2,5-pyrazinedicarboxylate), have been synthesized by reacting Ln(NO3)3 · 6H2O with 2,5-pyrazinedicarboxylic acid under hydrothermal condition in the absence of additional base and characterized by elemental analysis, IR spectra and TG analysis, as well as single-crystal X-ray diffraction. They crystallize isostructurally in the triclinic space group P-1 and the cell parameters agree with the ionic radii of the Ln(III) ions. Each trivalent rare earth ion is nine coordinate in an N2O7 environment. The ligand 2,5-pyrazinedicarboxylate adopts three coordination modes, through which the lanthanide ions are linked together to form an infinite three dimensional structure. A 1D channel exists along the (1 0 0) direction which accommodates uncoordinated water by hydrogen bonds. Heating of 4 at 120 °C evacuated the uncoordinated water while retaining its single crystallinity with only minor change in cell parameters (crystal 6, [Eu(pzdc)1.5(H2O)3]). This hydrophilic ultramicroporous channel is selective to accommodate water only among common solvents, which has some potential interest for solvent separation.  相似文献   

20.
Multiphoton microscopy (MPM) holds promise as a noninvasive imaging technique for characterizing collagen structure, and thus mechanical properties, through imaging second harmonic generation (SHG) and two-photon fluorescence in engineered and real connective tissues. Controlling polymerization pH to manipulate collagen gel microstructure, we quantified pore and fiber dimensions using both standard methods and image correlation spectroscopy (ICS) on MPM, scanning electron, and darkfield microscopy images. The latter two techniques are used to confirm microstructural measurements made from MPM images. As polymerization pH increased from 5.5 to 8.5, mean fiber diameter decreased from 3.7 ± 0.7 μm to 1.6 ± 0.3 μm, the average pore size decreased from 81.7 ± 3.7 μm2 to 7.8 ± 0.4 μm2, and the pore area fraction decreased from 56.8% ± 0.8% to 18.0% ± 1.3% (measured from SHG images), whereas the storage modulus G′ and loss modulus G′, components of the shear modulus, increased ∼33-fold and ∼16-fold, respectively. A characteristic length scale measured using ICS, WICS, correlates well with the mean fiber diameter from SHG images (R2 = 0.95). Semiflexible network theory predicts a scaling relationship of the collagen gel storage modulus (G′) depending upon mesh size and fiber diameter, which are estimated from SHG images using ICS. We conclude that MPM and ICS are an effective combination to assess bulk mechanical properties of collagen hydrogels in a noninvasive, objective, and systematic fashion and may be useful for specific in vivo applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号