首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CD4+CD25+FoxP3+ regulatory T cells (Tregs) and Th17 cells are known to be involved in the alloreactive responses in organ transplantation, but little is known about the relationship between Tregs and Th17 cells in the context of liver alloresponse. Here, we investigated whether the circulating Tregs/Th17 ratio is associated with acute allograft rejection in liver transplantation. In present study, thirty-eight patients who received liver transplant were enrolled. The patients were divided into two groups: acute allograft rejection group (Gr-AR) (n = 16) and stable allograft liver function group (Gr-SF) (n = 22). The frequencies of circulating Tregs and circulating Th17 cells, as well as Tregs/Th17 ratio were determined using flow cytometry. The association between Tregs/Th17 ratio and acute allograft rejection was then analyzed. Our results showed that the frequency of circulating Tregs was significantly decreased, whereas the frequency of circulating Th17 cells was significantly increased in liver allograft recipients who developed acute rejection. Tregs/Th17 ratio had a negative correlation with liver damage indices and the score of rejection activity index (RAI) after liver transplantation. In addition, the percentages of CTLA-4+, HLA-DR+, Ki67+, and IL-10+ Tregs were higher in Gr-SF group than in Gr-AR group. Our results suggested that the ratio of circulating Tregs/Th17 cells is associated with acute allograft rejection, thus the ratio may serve as an alternative marker for the diagnosis of acute rejection.  相似文献   

3.
Pretransplant donor lymphocyte infusion (DLI) has been shown to enhance donor-specific allograft survival in rodents, primates and humans. However, the cell subset that is critical for the DLI effect and the mechanisms involved remain elusive. In this study, we monitored donor cell subsets after DLI in a murine MHC class I Ld-mismatched skin transplantation model. We found that donor B cells, but not DCs, are the major surviving donor APCs in recipients following DLI. Infusing donor B, but not non-B, cells resulted in significantly enhanced donor-specific skin allograft survival. Furthermore, mice that had received donor B cells showed higher expression of Ly6A and CD62L on antigen-specific TCRαβ+CD3+CD4CD8NK1.1 double negative (DN) regulatory T cells (Tregs). B cells presented alloantigen to DN Tregs and primed their proliferation in an antigen-specific fashion. Importantly, DN Tregs, activated by donor B cells, showed increased cytotoxicity toward anti-donor CD8+ T cells. These data demonstrate that donor B cells can enhance skin allograft survival, at least partially, by increasing recipient DN Treg-mediated killing of anti-donor CD8+ T cells. These findings provide novel insights into the mechanisms underlying DLI-induced transplant tolerance and suggest that DN Tregs have great potential as an antigen-specific immune therapy to enhance allograft survival.  相似文献   

4.
Rapamycin (RPM), a powerful agent used clinically in transplant recipients, induces CD4+CD25+ regulatory T cells (Tregs) which play an important role in induction of immune tolerance. However, long-term use of RPM has negative side effects. In this report, we found that combination with the low dose RPM and high dose IL-2 did not affect antigen presentation of rat B cells to Tregs, and could efficiently promote Tregs proliferation and enhance their inhibitory activities in vitro. In addition, the combination of low dose RPM and high dose IL-2 enhanced mRNA expression of Foxp3, TGF-β1 and Pim-2 in Tregs but not in CD4+CD25 T effector cells (Teffs). The Tregs inhibitory activity is positively associated with mRNA expressions of TGF-β1 and Pim-2 while unrelated to the Foxp3 mRNA expression. Our present study offers one approach to expand functional Tregs in vitro, which maybe used for clinical immune tolerance induction.  相似文献   

5.
Acute rejection, a common complication of lung transplantation, may promote obliterative bronchiolitis leading to graft failure in lung transplant recipients. During acute rejection episodes, CD8+ T cells can contribute to lung epithelial injury but the mechanisms promoting and controlling CD8-mediated injury in the lung are not well understood. To study the mechanisms regulating CD8+ T cell–mediated lung rejection, we used a transgenic model in which adoptively transferred ovalbumin (OVA)-specific cytotoxic T lymphocytes (CTL) induce lung injury in mice expressing an ovalbumin transgene in the small airway epithelium of the lungs (CC10-OVA mice). The lung pathology is similar to findings in humans with acute lung transplant. In the presence of an intact immune response the inflammation resolves by day 30. Using CC10-OVA.RAG-/- mice, we found that CD4+ T cells and ICOS+/+ T cells were required for protection against lethal lung injury, while neutrophil depletion was not protective. In addition, CD4+Foxp3 + ICOS+ T cells were enriched in the lungs of animals surviving lung injury and ICOS+/+ Tregs promoted survival in animals that received ICOS-/- T cells. Direct comparison of ICOS-/- Tregs to ICOS+/+ Tregs found defects in vitro but no differences in the ability of ICOS-/- Tregs to protect from lethal lung injury. These data suggest that ICOS affects Treg development but is not necessarily required for Treg effector function.  相似文献   

6.
《Cytokine》2010,52(3):311-319
It has been reported that Th1 to Th2 immune deviation effectively promotes peripheral tolerance in situations involving a limited T cell clone size, such as T cell-dependent autoimmunity and transplantation across minor, but not major, histocompatibility barriers. In this study, we tested the hypothesis that while Th1 to Th2 immune deviation fails to induce tolerance in the MHC-mismatched islet allograft model, it may promote a state that is permissive for tolerance induction. Here, we report that anti-IL-12 did not prevent acute rejection of islet allografts when administered alone. In conjunction with CTLA4/Fc, however, anti-IL-12 greatly facilitated long-term engraftment in three MHC-mismatched strain combinations. Similarly, while non-cytolytic IL-4/Fc, a long-lasting form of IL-4, did not prevent acute graft rejection when administered alone, a low, but not a high, dose of IL-4/Fc synergized with CTLA4/Fc in inducing significant levels of islet allograft tolerance. Moreover, by using a skin allograft adoptive transfer model, we show that these effects induced by anti-IL-12 and IL-4/Fc treatment were associated with an enhancement of the suppressive properties of CD4+CD25+ regulatory T cells. Thus, anti-IL-12 and low-dose IL-4/Fc facilitate, but do not cause, islet allograft tolerance in mice by increasing the immunosuppressive potency of CD4+CD25+ regulatory T cells.  相似文献   

7.
Antigens introduced into the anterior chamber (AC) of the eye induce a potent form of antigen-specific peripheral immune tolerance termed AC-associated immune deviation (ACAID), which prevents inflammatory immune responses and is characterized by impaired delayed-type hypersensitivity (DTH) responses. Type-II collagen (CII) is a fibrillar protein expressed exclusively in cartilage tissues. Although of its clinical relevance to Rheumatoid arthritis, aging, and osteoarthritis, there have been no studies to date to test if CII has the ability to induce ACAID. We hypothesized that ACAID could be generated via AC injection of CII in BALB/c mice. Using a DTH assay, the hypothesis was supported and led to another hypothesis that CII is capable of inducing specific immune tolerance via CD8+ T regulatory cells (Tregs). Thus, we performed functional local adoptive transfer (LAT) assays to examine the regulatory roles of spleen cells, T cells, and CD8+ T cells in the specific immune regulation induced by CII injection into the AC. Results indicated that CII induced ACAID when injected into the AC. Spleen cells of mice injected with CII in the AC significantly suppressed DTH responses. The T cell compartment of the spleen was capable of expressing this suppression. CD8+ Tregs could solely express this CII-driven suppression and even exerted more noticeable suppression than spleen cells or splenic T cells. This study suggests a crucial role for CD8+ Tregs in mediating CII-driven ACAID-mediated immune tolerance. This could have therapeutic implications in Rheumatoid arthritis, aging, osteoarthritis, and other diseases in which CII is involved.  相似文献   

8.
9.
Exploring new immunosuppressive strategies inducing donor-specific hyporesponsiveness is an important challenge in transplantation. For this purpose, a careful immune monitoring and graft histology assessment is mandatory. Here, we report the results of a pilot study conducted in twenty renal transplant recipients, analyzing the immunomodulatory effects of a protocol based on induction therapy with rabbit anti-thymocyte globulin low doses, sirolimus, and mofetil mycophenolate. Evolution of donor-specific cellular and humoral alloimmune response, peripheral blood lymphocyte subsets and apoptosis was evaluated. Six-month protocol biopsies were performed to assess histological lesions and presence of FOXP3+ regulatory T cells (Tregs) in interstitial infiltrates. After transplantation, there was an early and transient apoptotic effect, mainly within the CD8+ HLADR+ T cells, combined with a sustained enhancement of CD4+ CD25(+high) lymphocytes in peripheral blood. The incidence of acute rejection was 35%, all steroid sensitive. Importantly, only pretransplant donor-specific cellular alloreactivity could discriminate patients at risk to develop acute rejection. Two thirds of the patients became donor-specific hyporesponders at 6 and 24 mo, and the achievement of this immunologic state was not abrogated by prior acute rejection episodes. Remarkably, donor-specific hyporesponders had the better renal function and less chronic renal damage. Donor-specific hyporesponsiveness was inhibited by depleting CD4+ CD25(+high) T cells, which showed donor-Ag specificity. FOXP3+ CD4+ CD25(+high) Tregs both in peripheral blood and in renal infiltrates were higher in donor-specific hyporesponders than in nonhyporesponders, suggesting that the recruitment of Tregs in the allograft plays an important role for renal acceptance. In conclusion, reaching donor-specific hyporesponsiveness is feasible after renal transplantation and associated with Treg recruitment in the graft.  相似文献   

10.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a promising and novel anticancer cytokine, specifically kills numerous tumor cells by apoptosis. However, some malignancies are resistant to TRAIL treatment in clinical trials, thus limiting its therapeutic potential. In the present study, the TRAIL-resistant murine hepatocellular carcinoma cell line Hepa1-6 was used to elucidate the physiological significance of TRAIL resistance, especially with respect to the immune regulatory function of TRAIL. Hepa1-6 cells were resistant to TRAIL-induced apoptosis in vitro; however, intratumoral injection of recombinant soluble TRAIL inhibited tumor growth and prolonged survival time in tumor-bearing mice. Local TRAIL treatment decreased the number of intratumoral CD4+CD25+Foxp3+ regulatory T cells (Tregs) but did not affect CD4+CD25+Foxp3+ Tregs in the draining lymph nodes and spleen. Further investigation showed that TRAIL induced apoptosis of tumor-activated CD4+CD25+Foxp3+ Tregs, but not of CD4+CD25? T cells. Moreover, mouse TRAIL receptor DR5 expression was detected on the surface of the tumor-infiltrating CD4+CD25+Foxp3+ Tregs, but not on naïve CD4+CD25+Foxp3+ Tregs. Interestingly, intratumoral injection of TRAIL not only decreased the number of CD4+CD25+Foxp3+ Tregs but also increased the number of tumor-specific CD8+ CTL and augmented their cytotoxicity to the tumor cells. These data provide the novel evidence for an immune regulatory function of TRAIL and may shed light on the clinical application of TRAIL.  相似文献   

11.
mAb therapy directed against a variety of cell surface accessory molecules has been effectively utilized to prolong allograft acceptance in various models of tissue and organ transplantation. The purpose of this study was to determine whether transient therapy directed against the adhesion molecule LFA-1 (CD11a) was sufficient to induce donor-specific tolerance to pancreatic islet allografts. Anti-LFA-1 monotherapy was found to be efficacious in inducing long-term islet allograft acceptance in multiple donor-recipient strain combinations. Graft acceptance following anti-LFA-1 therapy was not simply due to clonal ignorance of donor Ags in that the majority of recipients bearing established islet allografts resisted rejection induced by immunization with donor-type APCs. Furthermore, donor-specific tolerance from anti-LFA-1-treated animals could be transferred to secondary immune-deficient animals. Taken together, these results indicated that transient anti-LFA-1 monotherapy resulted in donor-specific tolerance. In vitro, functionally tolerant animals retained normal anti-donor reactivity as assessed by proliferative, cytotoxic, and cytokine release assays that demonstrated that tolerance was not secondary to general clonal deletion or anergy of donor-reactive T cells. Finally, anti-LFA-1 treatment was effective in both IL-4-deficient and IFN-gamma-deficient recipients, indicating that neither of these cytokines are universally required for allograft acceptance. These results suggest that anti-adhesion-based therapy can induce a nondeletional form of tolerance that is not overtly dependent on the prototypic Th1 and Th2 cytokines, IFN-gamma and IL-4, respectively, in contrast to results in other transplantation models.  相似文献   

12.
Costimulatory blockade of CD28-B7 interaction with CTLA4Ig is a well-established strategy to induce transplantation tolerance. Although previous in vitro studies suggest that CTLA4Ig upregulates expression of the immunoregulatory enzyme IDO in dendritic cells, the relationship of CTLA4Ig and IDO in in vivo organ transplantation remains unclear. In this study, we studied whether concerted immunomodulation in vivo by CTLA4Ig depends on IDO. C57BL/6 recipients receiving a fully MHC-mismatched BALB/c heart graft treated with CTLA4Ig + donor-specific transfusion showed indefinite graft survival (>100 d) without signs of chronic rejection or donor specific Ab formation. Recipients with long-term surviving grafts had significantly higher systemic IDO activity as compared with rejectors, which markedly correlated with intragraft IDO and Foxp3 levels. IDO inhibition with 1-methyl-dl-tryptophan, either at transplant or at postoperative day 50, abrogated CTLA4Ig + DST-induced long-term graft survival. Importantly, IDO1 knockout recipients experienced acute rejection and graft survival comparable to controls. In addition, αCD25 mAb-mediated depletion of regulatory T cells (Tregs) resulted in decreased IDO activity and again prevented CTLA4Ig + DST induced indefinite graft survival. Our results suggest that CTLA4Ig-induced tolerance to murine cardiac allografts is critically dependent on synergistic cross-linked interplay of IDO and Tregs. These results have important implications for the clinical development of this costimulatory blocker.  相似文献   

13.
Tolerance to allograft antigen is the major challenge and final goal of transplant medicine. Our previous study demonstrated that thioredoxin-1 (Trx) priming of donor lung significantly protected allogeneic lung graft. To determine whether Trx priming of donor lung inhibits allograft rejection, extends allograft survival and induces immune tolerance, orthotopic left lung transplantation was performed from Lewis to Sprague-Dawley rats without immunosuppression. Donor lungs were primed with Trx at 4°C for 4 hr prior to transplantation. After up to 37 days post-transplantation, allograft lung morphology, recipient T cell and humoral alloantigen-specific immune responses were examined. We found that Trx-primed lungs exhibited much reduced acute rejection and associated lung injuries resulting in loss of graft functional area at 5-37 days post-transplant in contrast to the control groups. CD4+ T cells from the recipients with Trx-primed grafts responded to the stimulation of dendritic cells (DCs) of donor origin, in contrast to DCs from the third party, with significantly reduced proliferation. Consistent with above findings, we observed that CD4+Foxp3+ regulatory T cells in spleen cells from the recipients with Trx-primed grafts were significantly increased compared to controls, and CD4+ T cells from the recipients with Trx-primed grafts produced much higher levels of immunosuppressive cytokine, IL-10 when stimulated with allogeneic donor DCs. In addition, humoral immune tolerance was also induced as there was no significant increase levels of serum antibodies against donor antigens in Trx-lung recipients when re-challenged with allogeneic donor antigens. Our results demonstrate that one-time Trx-priming of donor lung grafts prior to transplantation significantly prolongs the survival of the grafts through inducing or promoting cellular and humoral alloantigen-specific immune tolerance, which might be associated with the induction of immunosuppressive regulatory T cells.  相似文献   

14.
Over the past decade, there has been an accelerated understanding of immune regulatory mechanisms. Peripheral immune regulation is linked to a collection of specialized regulatory cells of the CD4+ T cell lineage (i.e., CD4+ Tregs). This collection consists of Tregs that are either thymically derived (i.e., natural) or peripherally induced. Tregs are important for controlling potentially autoreactive immune effectors and immunity to foreign organisms and molecules. Their importance in maintaining immune homeostasis and the overall health of an organism is clear. However, Tregs may also be involved in the pathogenesis of malignancies as now compelling evidence shows that tumors induce or recruit CD4+ Tregs to block immune priming and antitumor effectors. Efforts are underway to develop approaches that specifically inhibit the function of tumor-associated Tregs which could lead to an increased capability of the body’s immune system to respond to tumors but without off-target immune-related pathologies (i.e., autoimmune disease). In this review, the biology of human CD4+ Tregs is discussed along with their involvement in malignancies and emerging strategies to block their function.  相似文献   

15.
During immune response and T-cell activation, both effector T cells and regulatory T(T(reg)) cells are activated and regulated simultaneously by both positive and negative pathways. CD4(+)CD25(+) T(reg) cells play a critical role in immune tolerance to self antigens as well as to allografts in some transplant settings. Effective immunosuppressive regimens significantly reduced the incidence of acute allograft rejection in patients following organ transplantation. However, the impact of immunosuppressive treatment on the potential induction of transplant tolerance has not been well determined. In this review we summarize the effects of immunosuppressive reagents on CD4(+)CD25(+) T(reg) cells in order to bring attention to this issue, which may affect the choice of immunosuppressive regimen in the clinical setting.  相似文献   

16.
Protosappanin A (PrA), an immunosuppressive ingredient of the medicinal herb Caesalpinia sappan L, prolongs heart allograft survival in rats, possibly by impairing the function of antigen-presenting cells (APCs). We examined the effects of PrA on the maturation and function of dendritic cells (DCs), a potent class of APCs, and the downstream cell–cell and intracellular signaling pathways mediating the immunosuppressive activity of PrA. PrA inhibited LPS-stimulated maturation of Wistar rat DCs in vitro as reflected by reduced expression of costimulatory molecules (CD80 and CD86) and reduced expression of TLR4 and NF-κB, two critical signaling components for antigen recognition. PrA also enhanced the release of IL-10 and decreased the release of IL-12 from DCs, but had no effect on the production of TGF-ß. In mixed cultures, Wistar DCs pretreated with PrA impaired the proliferation of Sprague Dawley (SD) rat T cells while promoting the expansion of SD rat CD4+CD25+ regulatory T cells (Tregs). Both oral PrA treatment and infusion of PrA-pretreated Wistar DCs prolonged cardiac allograft survival (Wistar donor, SD recipient) and expanded recipient CD4+CD25+Foxp3+ Tregs. Donor spleen cells, but not spleen cells from a third rat strain (DA), supported the expansion of recipient CD4+CD25+Foxp3+ Tregs and suppressed recipient T cell proliferation. We conclude that PrA triggers a tolerogenic state in DCs that allows for the induction of alloantigen-specific Tregs and the suppression of allograft rejection in vivo.  相似文献   

17.
X Li  JJ Li  JY Yang  DS Wang  W Zhao  WJ Song  WM Li  JF Wang  W Han  ZC Zhang  Y Yu  DY Cao  KF Dou 《PloS one》2012,7(8):e44045

Background

Dendritic cells (DCs) release bioactive exosomes that play an important role in immune regulation. Because they express low levels of class I major histocompatibility complex (MHC) and co-stimulatory molecules, exosomes derived from donor immature DCs (imDex) prolong allograft survival by inhibiting T-cell activation. However, this effect is limited and does not induce immunological tolerance when imDex are administered alone. Thus, we tested the effect of combined treatment with donor imDex and low-dose rapamycin on inducing tolerance in a mouse cardiac transplantation model.

Methods

ImDex were obtained from the culture supernatant of immature DCs derived from donor mouse (C57BL/6) bone marrow and were injected with suboptimal doses of rapamycin into recipient mouse (BALB/c) before and after transplantation. The capacity of this treatment to induce immune tolerance was analyzed in vitro and in vivo using the mouse cardiac transplantation model.

Results

Donor imDex expressed moderate levels of MHC class II and low levels of MHC class I and co-stimulatory molecules, but neither imDex nor subtherapeutic rapamycin dose alone induced cardiac allograft tolerance. Combined treatment with imDex and rapamycin, however, led to donor specific cardiac allograft tolerance. This effect was accompanied by decreased anti-donor antigen cellular response and an increased percentage of spleen CD4+CD25+ T cells in recipients. Furthermore, this donor specific tolerance could be further transferred to naïve allograft recipients through injection of splenocytes, but not serum, from tolerant recipients.

Conclusion

Combined with immunosuppressive treatment, donor imDex can prolong cardiac allograft survival and induce donor specific allograft tolerance.  相似文献   

18.
CD8+ cytotoxic T lymphocytes (CTLs) are preferred immune cells for targeting cancer. During cancer progression, CTLs encounter dysfunction and exhaustion due to immunerelated tolerance and immunosuppression within the tumor microenvironment (TME), with all favor adaptive immune-resistance. Cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and regulatory T cells (Tregs) could make immunologic barriers against CD8 + T cell-mediated antitumor immune responses. Thus, CD8 + T cells are needed to be primed and activated toward effector CTLs in a process called tumor immunity cycle for making durable and efficient antitumor immune responses. The CD8 + T cell priming is directed essentially as a corroboration work between cells of innate immunity including dendritic cells (DCs) and natural killer (NK) cells with CD4 + T cells in adoptive immunity. Upon activation, effector CTLs infiltrate to the core or invading site of the tumor (so-called infiltrated–inflamed [I–I] TME) and take essential roles for killing cancer cells. Exogenous reactivation and/or priming of CD8 + T cells can be possible using rational immunotherapy strategies. The increase of the ratio for costimulatory to coinhibitory mediators using immune checkpoint blockade (ICB) approach. Programmed death-1 receptor (PD-1)–ligand (PD-L1) and CTL-associated antigen 4 (CTLA-4) are checkpoint receptors that can be targeted for relieving exhaustion of CD8 + T cells and renewing their priming, respectively, and thereby eliminating antigen-expressing cancer cells. Due to a diverse relation between CTLs with Tregs, the Treg activity could be dampened for increasing the number and rescuing the functional potential of CTLs to induce immunosensitivity of cancer cells.  相似文献   

19.
Pretreatment of pancreatic islets in 95% oxygen culture depletes graft-associated APCs and leads to indefinite allograft acceptance in immunocompetent recipients. As such, the APC-depleted allograft represents a model of peripheral alloantigen presentation in the absence of donor-derived costimulation. Over time, a state of donor-specific tolerance develops in which recipients are resistant to donor APC-induced graft rejection. Thus, persistence of the graft is sufficient to induce tolerance independent of other immune interventions. Donor-specific tolerance could be adoptively transferred to immune-deficient SCID recipient mice transplanted with fresh immunogenic islet allografts, indicating that the original recipient was not simply "ignorant" of donor antigens. Interestingly, despite the fact that the original islet allograft presented only MHC class I alloantigens, CD8+ T cells obtained from tolerant animals readily collaborated with naive CD4+ T cells to reject donor-type islet grafts. Conversely, tolerant CD4+ T cells failed to collaborate effectively with naive CD8+ T cells for the rejection of donor-type grafts. In conclusion, the MHC class I+, II- islet allograft paradoxically leads to a change in the donor-reactive CD4 T cell subset and not in the CD8 subset. We hypothesize that the tolerant state is not due to direct class I alloantigen presentation to CD8 T cells but, rather, occurs via the indirect pathway of donor Ag presentation to CD4 T cells in the context of host MHC class II molecules.  相似文献   

20.
Previous work on blockade of CD40-CD40 ligand interaction in mice and primates with anti-CD40 ligand mAbs has resulted in a moderate prolongation of allograft survival without the development of true allograft tolerance. In this study, we show in rats that adenovirus-mediated gene transfer of CD40Ig sequences into the graft resulted in prolonged (>200 days) expression of CD40Ig and in long-term (>300 days) survival. Recipients expressing CD40Ig displayed strongly (>90%) inhibited mixed leukocyte reactions and alloantibody production at early (days 5 and 17) and late time points (>100 day) after transplantation, but showed limited inhibition of leukocyte infiltration and cytokine production as evaluated by immunohistology at early time points (day 5). Recipients of long-surviving hearts showed donor-specific hyporesponsiveness since acceptance of second cardiac allografts was donor specific. Nevertheless, long-term allografts (>100 days) displayed signs of chronic rejection vasculopathy. Occluded vessels showed leukocyte infiltration, mainly composed of CD4(+) and CD8(+) cells, macrophages, and mast cells. These recipients also showed antidonor CTL activity. Recipients expressing CD40Ig did not show nonspecific immunosuppression, as they were able to mount anticognate immune responses that were partially inhibited at early time points and were normal thereafter. We conclude that gene transfer-mediated expression of CD40Ig resulted in a highly efficient inhibition of acute heart allograft rejection in rats. This treatment induced donor-specific inhibition of certain alloreactive mechanisms in the short-, but not the long-term, which resulted in long-term survival of allografts concomitant with the development of chronic rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号